Suppr超能文献

用于内耳组织分割的超分辨率分割网络。

Super-resolution segmentation network for inner-ear tissue segmentation.

作者信息

Liu Ziteng, Fan Yubo, Lou Ange, Noble Jack H

机构信息

Dept. of Computer Science, Vanderbilt University.

Dept. of Electrical and Computer Engineering, Vanderbilt University.

出版信息

Simul Synth Med Imaging. 2023 Oct;14288:11-20. doi: 10.1007/978-3-031-44689-4_2. Epub 2023 Oct 7.

Abstract

Cochlear implants (CIs) are considered the standard-of-care treatment for profound sensory-based hearing loss. Several groups have proposed computational models of the cochlea in order to study the neural activation patterns in response to CI stimulation. However, most of the current implementations either rely on high-resolution histological images that cannot be customized for CI users or CT images that lack the spatial resolution to show cochlear structures. In this work, we propose to use a deep learning-based method to obtain μCT level tissue labels using patient CT images. Experiments showed that the proposed super-resolution segmentation architecture achieved very good performance on the inner-ear tissue segmentation. Our best-performing model (0.871) outperformed the UNet (0.746), VNet (0.853), nnUNet (0.861), TransUNet (0.848), and SRGAN (0.780) in terms of mean dice score.

摘要

人工耳蜗(CI)被认为是重度基于感觉的听力损失的标准治疗方法。几个研究团队已经提出了耳蜗的计算模型,以研究对CI刺激的神经激活模式。然而,当前的大多数实现方式要么依赖于无法为CI用户定制的高分辨率组织学图像,要么依赖于缺乏显示耳蜗结构空间分辨率的CT图像。在这项工作中,我们建议使用基于深度学习的方法,利用患者的CT图像获得μCT级别的组织标签。实验表明,所提出的超分辨率分割架构在内耳组织分割方面取得了非常好的性能。我们表现最佳的模型(0.871)在平均骰子分数方面优于UNet(0.746)、VNet(0.853)、nnUNet(0.861)、TransUNet(0.848)和SRGAN(0.780)。

相似文献

1
Super-resolution segmentation network for inner-ear tissue segmentation.
Simul Synth Med Imaging. 2023 Oct;14288:11-20. doi: 10.1007/978-3-031-44689-4_2. Epub 2023 Oct 7.
2
Multi-Scale deep learning framework for cochlea localization, segmentation and analysis on clinical ultra-high-resolution CT images.
Comput Methods Programs Biomed. 2020 Jul;191:105387. doi: 10.1016/j.cmpb.2020.105387. Epub 2020 Feb 15.
3
An improved 3D-UNet-based brain hippocampus segmentation model based on MR images.
BMC Med Imaging. 2024 Jul 5;24(1):166. doi: 10.1186/s12880-024-01346-w.
4
Deep learning-based recognition and segmentation of intracranial aneurysms under small sample size.
Front Physiol. 2022 Dec 19;13:1084202. doi: 10.3389/fphys.2022.1084202. eCollection 2022.
5
IE-Vnet: Deep Learning-Based Segmentation of the Inner Ear's Total Fluid Space.
Front Neurol. 2022 May 11;13:663200. doi: 10.3389/fneur.2022.663200. eCollection 2022.
7
Automatic segmentation of intra-cochlear anatomy in post-implantation CT of unilateral cochlear implant recipients.
Med Image Anal. 2014 Apr;18(3):605-15. doi: 10.1016/j.media.2014.02.001. Epub 2014 Feb 18.
8
Metal artifact reduction for the segmentation of the intra cochlear anatomy in CT images of the ear with 3D-conditional GANs.
Med Image Anal. 2019 Dec;58:101553. doi: 10.1016/j.media.2019.101553. Epub 2019 Sep 4.
9
Dense-UNet: a novel multiphoton cellular image segmentation model based on a convolutional neural network.
Quant Imaging Med Surg. 2020 Jun;10(6):1275-1285. doi: 10.21037/qims-19-1090.
10
Automatic segmentation of inner ear on CT-scan using auto-context convolutional neural network.
Sci Rep. 2021 Feb 23;11(1):4406. doi: 10.1038/s41598-021-83955-x.

本文引用的文献

2
Multi-window back-projection residual networks for reconstructing COVID-19 CT super-resolution images.
Comput Methods Programs Biomed. 2021 Mar;200:105934. doi: 10.1016/j.cmpb.2021.105934. Epub 2021 Jan 8.
3
nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation.
Nat Methods. 2021 Feb;18(2):203-211. doi: 10.1038/s41592-020-01008-z. Epub 2020 Dec 7.
5
CT Super-Resolution GAN Constrained by the Identical, Residual, and Cycle Learning Ensemble (GAN-CIRCLE).
IEEE Trans Med Imaging. 2020 Jan;39(1):188-203. doi: 10.1109/TMI.2019.2922960. Epub 2019 Jun 14.
6
Deep Learning Techniques for Medical Image Segmentation: Achievements and Challenges.
J Digit Imaging. 2019 Aug;32(4):582-596. doi: 10.1007/s10278-019-00227-x.
7
Computed tomography super-resolution using deep convolutional neural network.
Phys Med Biol. 2018 Jul 16;63(14):145011. doi: 10.1088/1361-6560/aacdd4.
8
Initial Results With Image-guided Cochlear Implant Programming in Children.
Otol Neurotol. 2016 Feb;37(2):e63-9. doi: 10.1097/MAO.0000000000000909.
9
Constructing a three-dimensional electrical model of a living cochlear implant user's cochlea.
Int J Numer Method Biomed Eng. 2016 Jul;32(7). doi: 10.1002/cnm.2751. Epub 2015 Dec 2.
10
Current focussing in cochlear implants: an analysis of neural recruitment in a computational model.
Hear Res. 2015 Apr;322:89-98. doi: 10.1016/j.heares.2014.12.004. Epub 2014 Dec 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验