Liu Ziteng, Fan Yubo, Lou Ange, Noble Jack H
Dept. of Computer Science, Vanderbilt University.
Dept. of Electrical and Computer Engineering, Vanderbilt University.
Simul Synth Med Imaging. 2023 Oct;14288:11-20. doi: 10.1007/978-3-031-44689-4_2. Epub 2023 Oct 7.
Cochlear implants (CIs) are considered the standard-of-care treatment for profound sensory-based hearing loss. Several groups have proposed computational models of the cochlea in order to study the neural activation patterns in response to CI stimulation. However, most of the current implementations either rely on high-resolution histological images that cannot be customized for CI users or CT images that lack the spatial resolution to show cochlear structures. In this work, we propose to use a deep learning-based method to obtain μCT level tissue labels using patient CT images. Experiments showed that the proposed super-resolution segmentation architecture achieved very good performance on the inner-ear tissue segmentation. Our best-performing model (0.871) outperformed the UNet (0.746), VNet (0.853), nnUNet (0.861), TransUNet (0.848), and SRGAN (0.780) in terms of mean dice score.
人工耳蜗(CI)被认为是重度基于感觉的听力损失的标准治疗方法。几个研究团队已经提出了耳蜗的计算模型,以研究对CI刺激的神经激活模式。然而,当前的大多数实现方式要么依赖于无法为CI用户定制的高分辨率组织学图像,要么依赖于缺乏显示耳蜗结构空间分辨率的CT图像。在这项工作中,我们建议使用基于深度学习的方法,利用患者的CT图像获得μCT级别的组织标签。实验表明,所提出的超分辨率分割架构在内耳组织分割方面取得了非常好的性能。我们表现最佳的模型(0.871)在平均骰子分数方面优于UNet(0.746)、VNet(0.853)、nnUNet(0.861)、TransUNet(0.848)和SRGAN(0.780)。