Suppr超能文献

从具有不同方位、分辨率和对比度的临床 MRI 检查扫描中联合超分辨率和合成 1 毫米各向同性 MP-RAGE 容积。

Joint super-resolution and synthesis of 1 mm isotropic MP-RAGE volumes from clinical MRI exams with scans of different orientation, resolution and contrast.

机构信息

Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, UK; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Boston, USA.

Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, UK.

出版信息

Neuroimage. 2021 Aug 15;237:118206. doi: 10.1016/j.neuroimage.2021.118206. Epub 2021 May 25.

Abstract

Most existing algorithms for automatic 3D morphometry of human brain MRI scans are designed for data with near-isotropic voxels at approximately 1 mm resolution, and frequently have contrast constraints as well-typically requiring T1-weighted images (e.g., MP-RAGE scans). This limitation prevents the analysis of millions of MRI scans acquired with large inter-slice spacing in clinical settings every year. In turn, the inability to quantitatively analyze these scans hinders the adoption of quantitative neuro imaging in healthcare, and also precludes research studies that could attain huge sample sizes and hence greatly improve our understanding of the human brain. Recent advances in convolutional neural networks (CNNs) are producing outstanding results in super-resolution and contrast synthesis of MRI. However, these approaches are very sensitive to the specific combination of contrast, resolution and orientation of the input images, and thus do not generalize to diverse clinical acquisition protocols - even within sites. In this article, we present SynthSR, a method to train a CNN that receives one or more scans with spaced slices, acquired with different contrast, resolution and orientation, and produces an isotropic scan of canonical contrast (typically a 1 mm MP-RAGE). The presented method does not require any preprocessing, beyond rigid coregistration of the input scans. Crucially, SynthSR trains on synthetic input images generated from 3D segmentations, and can thus be used to train CNNs for any combination of contrasts, resolutions and orientations without high-resolution real images of the input contrasts. We test the images generated with SynthSR in an array of common downstream analyses, and show that they can be reliably used for subcortical segmentation and volumetry, image registration (e.g., for tensor-based morphometry), and, if some image quality requirements are met, even cortical thickness morphometry. The source code is publicly available at https://github.com/BBillot/SynthSR.

摘要

大多数现有的用于自动 3D 人体脑 MRI 扫描形态计量学的算法都是为具有接近各向同性体素(约 1 毫米分辨率)的数据而设计的,并且通常具有对比度限制-通常需要 T1 加权图像(例如,MP-RAGE 扫描)。这种限制阻止了每年在临床环境中使用大切片间距获取的数百万 MRI 扫描的分析。反过来,无法对这些扫描进行定量分析会阻碍定量神经影像学在医疗保健中的应用,也阻止了可以达到巨大样本量的研究,从而极大地提高了我们对人脑的理解。卷积神经网络(CNN)的最新进展在 MRI 的超分辨率和对比度合成方面取得了出色的成果。然而,这些方法对输入图像的对比度、分辨率和方向的特定组合非常敏感,因此无法推广到不同的临床采集方案-即使在同一地点。在本文中,我们提出了 SynthSR,这是一种训练 CNN 的方法,该 CNN 接收一个或多个具有间隔切片的扫描,这些扫描具有不同的对比度、分辨率和方向,并生成具有标准对比度(通常为 1 毫米的 MP-RAGE)的各向同性扫描。所提出的方法除了刚性输入扫描的配准之外,不需要任何预处理。至关重要的是,SynthSR 基于从 3D 分割生成的合成输入图像进行训练,因此可以用于训练任何对比度、分辨率和方向组合的 CNN,而无需输入对比度的高分辨率真实图像。我们在一系列常见的下游分析中测试了 SynthSR 生成的图像,并表明它们可以可靠地用于皮质下分割和体积测量、图像配准(例如,基于张量的形态计量学),并且,如果满足某些图像质量要求,甚至可以用于皮质厚度形态计量学。源代码可在 https://github.com/BBillot/SynthSR 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba7d/8543079/1dd8cc21f4ac/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验