Suppr超能文献

基于脑电图(EEG)和肌电图(EMG)的人机界面,用于与移动相关的辅助轮椅(MRA-W)导航。

EEG and EMG-based human-machine interface for navigation of mobility-related assistive wheelchair (MRA-W).

作者信息

Welihinda D V D S, Gunarathne L K P, Herath H M K K M B, Yasakethu S L P, Madusanka Nuwan, Lee Byeong-Il

机构信息

Faculty of Engineering, Sri Lanka Technological Campus, Padukka, Sri Lanka.

Computational Intelligence and Robotics Research Lab, Sri Lanka Technological Campus, Padukka, Sri Lanka.

出版信息

Heliyon. 2024 Mar 15;10(6):e27777. doi: 10.1016/j.heliyon.2024.e27777. eCollection 2024 Mar 30.

Abstract

The control of human-machine interfaces (HMIs), such as motorized wheelchairs, has been widely investigated using biopotentials produced by electrochemical processes in the human body. However, many studies in this field sometimes overlook crucial factors like special users' needs, who often have inadequate muscle mass and strength, and paresis needed to operate a wheelchair. This study proposes a novel solution: an economical, universally compatible, and user-centric manual-to-powered wheelchair conversion kit. The powered wheelchair is operated using a hybrid control system integrating electroencephalogram (EEG) and electromyography (EMG), utilizing an LSTM network. It uses a low-cost electroencephalogram (EEG) headset and a wearable electromyography (EMG) electrode armband to solve these constraints. The proposed system comprised three crucial objectives: the development of an EEG-based user attentive detection system, an EMG-based navigation system, and a transform conventional wheelchair into a powered wheelchair. Human test subjects were utilized to evaluate the proposed system, and the study complied with accepted ethical guidelines. We selected four EEG features () for the attentive detection system and six EMG features () to detect navigation intentions. User attentive detection was achieved at 83.33 (±0.34) %, while the navigation intention system produced 86.67 (±0.52) % accuracy. The overall system was successful in reaching an accuracy rate of 85.0 (±0.19) % and a weighted average precision of 0.89. After the dataset was trained using an LSTM network, the overall accuracy produced was 97.3 (±0.5) %, higher than the accuracy produced by the Quadratic SVM classifier. By giving older and disabled people a more convenient way to use powered wheelchairs, this research helps to build ergonomic and cost-effective biopotential-based HMIs, enhancing their quality of life.

摘要

诸如电动轮椅之类的人机接口(HMI)的控制,已通过人体电化学过程产生的生物电位得到了广泛研究。然而,该领域的许多研究有时会忽略一些关键因素,比如特殊用户的需求,这些用户通常肌肉量和力量不足,且操作轮椅需要轻瘫。本研究提出了一种新颖的解决方案:一种经济、普遍兼容且以用户为中心的手动轮椅到电动轮椅转换套件。该电动轮椅使用集成了脑电图(EEG)和肌电图(EMG)的混合控制系统进行操作,并利用长短期记忆网络(LSTM)。它使用低成本的脑电图(EEG)头戴设备和可穿戴肌电图(EMG)电极臂带来解决这些限制。所提出的系统包含三个关键目标:开发基于EEG的用户注意力检测系统、基于EMG的导航系统,以及将传统轮椅转换为电动轮椅。利用人体测试对象对所提出的系统进行评估,并且该研究符合公认的伦理准则。我们为注意力检测系统选择了四个EEG特征(),并选择了六个EMG特征()来检测导航意图。用户注意力检测的准确率为83.33(±0.34)%,而导航意图系统的准确率为86.67(±0.52)%。整个系统成功达到了85.0(±0.19)%的准确率和0.89的加权平均精度。在使用LSTM网络对数据集进行训练后,产生的总体准确率为97.3(±0.5)%,高于二次支持向量机分类器产生的准确率。通过为老年人和残疾人提供更便捷的使用电动轮椅的方式,本研究有助于构建符合人体工程学且具有成本效益的基于生物电位的人机接口,提高他们的生活质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f495/10979182/9939dcd6a57a/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验