Alali Mohammad, Imani Mahdi
Department of Electrical and Computer Engineering at Northeastern University.
Control Technol Appl. 2024 Aug;2024:400-406. doi: 10.1109/ccta60707.2024.10666595. Epub 2024 Sep 11.
This paper focuses on joint state and parameter estimation in partially observed Boolean dynamical systems (POBDS), a hidden Markov model tailored for modeling complex networks with binary state variables. The majority of current techniques for parameter estimation rely on computationally expensive gradient-based methods, which become intractable in most practical applications with large size of networks. We propose a gradient-free approach that uses Gaussian processes to model the expensive log-likelihood function and utilizes Bayesian optimization for efficient likelihood search over parameter space. Joint state estimation is also achieved alongside parameter estimation using the Boolean Kalman filter. The performance of the proposed method is demonstrated using gene regulatory networks observed through synthetic gene-expression data. The numerical results demonstrate the scalability and effectiveness of the proposed method in the joint estimation of the model parameters and genes' states.
本文聚焦于部分可观测布尔动态系统(POBDS)中的联合状态与参数估计,POBDS是一种为具有二元状态变量的复杂网络建模量身定制的隐马尔可夫模型。当前大多数参数估计技术依赖于计算成本高昂的基于梯度的方法,在大多数网络规模较大的实际应用中,这些方法变得难以处理。我们提出一种无梯度方法,该方法使用高斯过程对代价高昂的对数似然函数进行建模,并利用贝叶斯优化在参数空间中进行高效的似然搜索。同时,使用布尔卡尔曼滤波器在参数估计的同时实现联合状态估计。通过合成基因表达数据观测到的基因调控网络,展示了所提方法的性能。数值结果证明了所提方法在模型参数和基因状态联合估计中的可扩展性和有效性。