Suppr超能文献

用于具有二元空间的动态网络状态和参数估计的贝叶斯优化

Bayesian Optimization for State and Parameter Estimation of Dynamic Networks with Binary Space.

作者信息

Alali Mohammad, Imani Mahdi

机构信息

Department of Electrical and Computer Engineering at Northeastern University.

出版信息

Control Technol Appl. 2024 Aug;2024:400-406. doi: 10.1109/ccta60707.2024.10666595. Epub 2024 Sep 11.

Abstract

This paper focuses on joint state and parameter estimation in partially observed Boolean dynamical systems (POBDS), a hidden Markov model tailored for modeling complex networks with binary state variables. The majority of current techniques for parameter estimation rely on computationally expensive gradient-based methods, which become intractable in most practical applications with large size of networks. We propose a gradient-free approach that uses Gaussian processes to model the expensive log-likelihood function and utilizes Bayesian optimization for efficient likelihood search over parameter space. Joint state estimation is also achieved alongside parameter estimation using the Boolean Kalman filter. The performance of the proposed method is demonstrated using gene regulatory networks observed through synthetic gene-expression data. The numerical results demonstrate the scalability and effectiveness of the proposed method in the joint estimation of the model parameters and genes' states.

摘要

本文聚焦于部分可观测布尔动态系统(POBDS)中的联合状态与参数估计,POBDS是一种为具有二元状态变量的复杂网络建模量身定制的隐马尔可夫模型。当前大多数参数估计技术依赖于计算成本高昂的基于梯度的方法,在大多数网络规模较大的实际应用中,这些方法变得难以处理。我们提出一种无梯度方法,该方法使用高斯过程对代价高昂的对数似然函数进行建模,并利用贝叶斯优化在参数空间中进行高效的似然搜索。同时,使用布尔卡尔曼滤波器在参数估计的同时实现联合状态估计。通过合成基因表达数据观测到的基因调控网络,展示了所提方法的性能。数值结果证明了所提方法在模型参数和基因状态联合估计中的可扩展性和有效性。

相似文献

3
Inference of regulatory networks through temporally sparse data.通过时间上稀疏的数据推断调控网络。
Front Control Eng. 2022;3. doi: 10.3389/fcteg.2022.1017256. Epub 2022 Dec 13.
4
Modeling of nonlinear biological phenomena modeled by S-systems.由S-系统建模的非线性生物现象建模。
Math Biosci. 2014 Mar;249:75-91. doi: 10.1016/j.mbs.2014.01.011. Epub 2014 Feb 11.
7
Maximum-Likelihood State Estimators in Probabilistic Boolean Control Networks.概率布尔控制网络中的最大似然状态估计器
IEEE Trans Cybern. 2023 Jun;53(6):3414-3427. doi: 10.1109/TCYB.2021.3127880. Epub 2023 May 17.
10
Adaptive Particle Filtering for Fault Detection in Partially-Observed Boolean Dynamical Systems.用于部分观测布尔动力系统故障检测的自适应粒子滤波
IEEE/ACM Trans Comput Biol Bioinform. 2020 Jul-Aug;17(4):1105-1114. doi: 10.1109/TCBB.2018.2880234. Epub 2018 Nov 9.

引用本文的文献

本文引用的文献

1
Optimal Inference of Hidden Markov Models Through Expert-Acquired Data.通过专家获取的数据对隐马尔可夫模型进行最优推断。
IEEE Trans Artif Intell. 2024 Aug;5(8):3985-4000. doi: 10.1109/tai.2024.3358261. Epub 2024 Jan 24.
2
Bayesian Lookahead Perturbation Policy for Inference of Regulatory Networks.贝叶斯前瞻微扰策略在调控网络推断中的应用。
IEEE/ACM Trans Comput Biol Bioinform. 2024 Sep-Oct;21(5):1504-1517. doi: 10.1109/TCBB.2024.3402220. Epub 2024 Oct 9.
4
Modeling Defensive Response of Cells to Therapies: Equilibrium Interventions for Regulatory Networks.建模细胞对疗法的防御反应:调控网络的平衡干预。
IEEE/ACM Trans Comput Biol Bioinform. 2024 Sep-Oct;21(5):1322-1334. doi: 10.1109/TCBB.2024.3383814. Epub 2024 Oct 9.
5
Structure-Based Inverse Reinforcement Learning for Quantification of Biological Knowledge.基于结构的逆强化学习用于生物知识量化
2023 IEEE Conf Artif Intell (2023). 2023 Jun;2023:282-284. doi: 10.1109/cai54212.2023.00126. Epub 2023 Aug 2.
6
Learning to Fight Against Cell Stimuli: A Game Theoretic Perspective.从博弈论视角看学习对抗细胞刺激
2023 IEEE Conf Artif Intell (2023). 2023 Jun;2023:285-287. doi: 10.1109/cai54212.2023.00127. Epub 2023 Aug 2.
7
Reinforcement Learning Data-Acquiring for Causal Inference of Regulatory Networks.用于调控网络因果推断的强化学习数据获取
Proc Am Control Conf. 2023 May-Jun;2023:3957-3964. doi: 10.23919/acc55779.2023.10155867. Epub 2023 Jul 3.
8
Optimal Recursive Expert-Enabled Inference in Regulatory Networks.调控网络中基于最优递归专家的推理
IEEE Control Syst Lett. 2023;7:1027-1032. doi: 10.1109/lcsys.2022.3229054. Epub 2022 Dec 14.
9
Inference of regulatory networks through temporally sparse data.通过时间上稀疏的数据推断调控网络。
Front Control Eng. 2022;3. doi: 10.3389/fcteg.2022.1017256. Epub 2022 Dec 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验