Suppr超能文献

用于调控网络因果推断的强化学习数据获取

Reinforcement Learning Data-Acquiring for Causal Inference of Regulatory Networks.

作者信息

Alali Mohammad, Imani Mahdi

机构信息

Department of Electrical and Computer Engineering at Northeastern University.

出版信息

Proc Am Control Conf. 2023 May-Jun;2023:3957-3964. doi: 10.23919/acc55779.2023.10155867. Epub 2023 Jul 3.

Abstract

Gene regulatory networks (GRNs) consist of multiple interacting genes whose activities govern various cellular processes. The limitations in genomics data and the complexity of the interactions between components often pose huge uncertainties in the models of these biological systems. Meanwhile, inferring/estimating the interactions between components of the GRNs using data acquired from the normal condition of these biological systems is a challenging or, in some cases, an impossible task. Perturbation is a well-known genomics approach that aims to excite targeted components to gather useful data from these systems. This paper models GRNs using the Boolean network with perturbation, where the network uncertainty appears in terms of unknown interactions between genes. Unlike the existing heuristics and greedy data-acquiring methods, this paper provides an optimal Bayesian formulation of the data-acquiring process in the reinforcement learning context, where the actions are perturbations, and the reward measures step-wise improvement in the inference accuracy. We develop a semi-gradient reinforcement learning method with function approximation for learning near-optimal data-acquiring policy. The obtained policy yields near-exact Bayesian optimality with respect to the entire uncertainty in the regulatory network model, and allows learning the policy offline through planning. We demonstrate the performance of the proposed framework using the well-known p53-Mdm2 negative feedback loop gene regulatory network.

摘要

基因调控网络(GRNs)由多个相互作用的基因组成,这些基因的活动控制着各种细胞过程。基因组学数据的局限性以及组件之间相互作用的复杂性,常常给这些生物系统的模型带来巨大的不确定性。同时,利用从这些生物系统的正常状态获取的数据来推断/估计基因调控网络组件之间的相互作用是一项具有挑战性的任务,在某些情况下甚至是不可能完成的任务。扰动是一种著名的基因组学方法,旨在激发目标组件以从这些系统中收集有用数据。本文使用带有扰动的布尔网络对基因调控网络进行建模,其中网络的不确定性表现为基因之间未知的相互作用。与现有的启发式和贪婪数据获取方法不同,本文在强化学习的背景下提供了一种数据获取过程的最优贝叶斯公式,其中动作是扰动,奖励衡量推理准确性的逐步提高。我们开发了一种具有函数逼近的半梯度强化学习方法,用于学习近似最优的数据获取策略。所获得的策略在调控网络模型的整个不确定性方面产生了近似精确的贝叶斯最优性,并允许通过规划离线学习该策略。我们使用著名的p53-Mdm2负反馈回路基因调控网络展示了所提出框架的性能。

相似文献

1
Reinforcement Learning Data-Acquiring for Causal Inference of Regulatory Networks.用于调控网络因果推断的强化学习数据获取
Proc Am Control Conf. 2023 May-Jun;2023:3957-3964. doi: 10.23919/acc55779.2023.10155867. Epub 2023 Jul 3.
2
Bayesian Lookahead Perturbation Policy for Inference of Regulatory Networks.贝叶斯前瞻微扰策略在调控网络推断中的应用。
IEEE/ACM Trans Comput Biol Bioinform. 2024 Sep-Oct;21(5):1504-1517. doi: 10.1109/TCBB.2024.3402220. Epub 2024 Oct 9.
3
Optimal Recursive Expert-Enabled Inference in Regulatory Networks.调控网络中基于最优递归专家的推理
IEEE Control Syst Lett. 2023;7:1027-1032. doi: 10.1109/lcsys.2022.3229054. Epub 2022 Dec 14.
6
Inference of regulatory networks through temporally sparse data.通过时间上稀疏的数据推断调控网络。
Front Control Eng. 2022;3. doi: 10.3389/fcteg.2022.1017256. Epub 2022 Dec 13.
7
Control of Gene Regulatory Networks Using Bayesian Inverse Reinforcement Learning.使用贝叶斯逆强化学习控制基因调控网络。
IEEE/ACM Trans Comput Biol Bioinform. 2019 Jul-Aug;16(4):1250-1261. doi: 10.1109/TCBB.2018.2830357. Epub 2018 Apr 26.

引用本文的文献

5
Causal Inference Meets Deep Learning: A Comprehensive Survey.因果推断与深度学习:全面综述
Research (Wash D C). 2024 Sep 10;7:0467. doi: 10.34133/research.0467. eCollection 2024.
6
Optimal Inference of Hidden Markov Models Through Expert-Acquired Data.通过专家获取的数据对隐马尔可夫模型进行最优推断。
IEEE Trans Artif Intell. 2024 Aug;5(8):3985-4000. doi: 10.1109/tai.2024.3358261. Epub 2024 Jan 24.
7
9
Modeling Defensive Response of Cells to Therapies: Equilibrium Interventions for Regulatory Networks.建模细胞对疗法的防御反应:调控网络的平衡干预。
IEEE/ACM Trans Comput Biol Bioinform. 2024 Sep-Oct;21(5):1322-1334. doi: 10.1109/TCBB.2024.3383814. Epub 2024 Oct 9.
10
Structure-Based Inverse Reinforcement Learning for Quantification of Biological Knowledge.基于结构的逆强化学习用于生物知识量化
2023 IEEE Conf Artif Intell (2023). 2023 Jun;2023:282-284. doi: 10.1109/cai54212.2023.00126. Epub 2023 Aug 2.

本文引用的文献

1
Optimal Recursive Expert-Enabled Inference in Regulatory Networks.调控网络中基于最优递归专家的推理
IEEE Control Syst Lett. 2023;7:1027-1032. doi: 10.1109/lcsys.2022.3229054. Epub 2022 Dec 14.
2
Inference of regulatory networks through temporally sparse data.通过时间上稀疏的数据推断调控网络。
Front Control Eng. 2022;3. doi: 10.3389/fcteg.2022.1017256. Epub 2022 Dec 13.
4
7
Computational inference of gene regulatory networks: Approaches, limitations and opportunities.计算推断基因调控网络:方法、限制和机遇。
Biochim Biophys Acta Gene Regul Mech. 2017 Jan;1860(1):41-52. doi: 10.1016/j.bbagrm.2016.09.003. Epub 2016 Sep 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验