Martin-Solana Eva, Diaz-Lopez Irene, Mohamedi Yamina, Ventoso Ivan, Fernandez Jose-Jesus, Fernandez-Fernandez Maria Rosario
Centro Nacional de Biotecnología (CNB-CSIC). Campus UAM, Darwin 3, 28049 Madrid, Spain.
MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
Neurobiol Dis. 2024 Jun 1;195:106488. doi: 10.1016/j.nbd.2024.106488. Epub 2024 Mar 31.
Given their highly polarized morphology and functional singularity, neurons require precise spatial and temporal control of protein synthesis. Alterations in protein translation have been implicated in the development and progression of a wide range of neurological and neurodegenerative disorders, including Huntington's disease (HD). In this study we examined the architecture of polysomes in their native brain context in striatal tissue from the zQ175 knock-in mouse model of HD. We performed 3D electron tomography of high-pressure frozen and freeze-substituted striatal tissue from HD models and corresponding controls at different ages. Electron tomography results revealed progressive remodelling towards a more compacted polysomal architecture in the mouse model, an effect that coincided with the emergence and progression of HD related symptoms. The aberrant polysomal architecture is compatible with ribosome stalling phenomena. In fact, we also detected in the zQ175 model an increase in the striatal expression of the stalling relief factor EIF5A2 and an increase in the accumulation of eIF5A1, eIF5A2 and hypusinated eIF5A1, the active form of eIF5A1. Polysomal sedimentation gradients showed differences in the relative accumulation of 40S ribosomal subunits and in polysomal distribution in striatal samples of the zQ175 model. These findings indicate that changes in the architecture of the protein synthesis machinery may underlie translational alterations associated with HD, opening new avenues for understanding the progression of the disease.
鉴于神经元高度极化的形态和功能独特性,它们需要对蛋白质合成进行精确的空间和时间控制。蛋白质翻译的改变与包括亨廷顿舞蹈病(HD)在内的多种神经和神经退行性疾病的发生和发展有关。在本研究中,我们在HD的zQ175基因敲入小鼠模型的纹状体组织中,研究了其天然脑环境下多核糖体的结构。我们对不同年龄的HD模型和相应对照的高压冷冻和冷冻置换的纹状体组织进行了三维电子断层扫描。电子断层扫描结果显示,在小鼠模型中多核糖体结构逐渐重塑为更紧密的结构,这一效应与HD相关症状的出现和发展相吻合。异常的多核糖体结构与核糖体停滞现象相符。事实上,我们在zQ175模型中还检测到停滞缓解因子EIF5A2在纹状体中的表达增加,以及eIF5A1、eIF5A2和hypusinated eIF5A1(eIF5A1的活性形式)的积累增加。多核糖体沉降梯度显示,zQ175模型纹状体样本中40S核糖体亚基的相对积累和多核糖体分布存在差异。这些发现表明,蛋白质合成机制结构的变化可能是与HD相关的翻译改变的基础,为理解该疾病的进展开辟了新途径。