College of Information Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China.
Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
Biomed Eng Online. 2024 Apr 2;23(1):39. doi: 10.1186/s12938-024-01230-2.
Congenital heart disease (CHD) is one of the most common birth defects in the world. It is the leading cause of infant mortality, necessitating an early diagnosis for timely intervention. Prenatal screening using ultrasound is the primary method for CHD detection. However, its effectiveness is heavily reliant on the expertise of physicians, leading to subjective interpretations and potential underdiagnosis. Therefore, a method for automatic analysis of fetal cardiac ultrasound images is highly desired to assist an objective and effective CHD diagnosis.
In this study, we propose a deep learning-based framework for the identification and segmentation of the three vessels-the pulmonary artery, aorta, and superior vena cava-in the ultrasound three vessel view (3VV) of the fetal heart. In the first stage of the framework, the object detection model Yolov5 is employed to identify the three vessels and localize the Region of Interest (ROI) within the original full-sized ultrasound images. Subsequently, a modified Deeplabv3 equipped with our novel AMFF (Attentional Multi-scale Feature Fusion) module is applied in the second stage to segment the three vessels within the cropped ROI images.
We evaluated our method with a dataset consisting of 511 fetal heart 3VV images. Compared to existing models, our framework exhibits superior performance in the segmentation of all the three vessels, demonstrating the Dice coefficients of 85.55%, 89.12%, and 77.54% for PA, Ao and SVC respectively.
Our experimental results show that our proposed framework can automatically and accurately detect and segment the three vessels in fetal heart 3VV images. This method has the potential to assist sonographers in enhancing the precision of vessel assessment during fetal heart examinations.
先天性心脏病(CHD)是世界上最常见的出生缺陷之一。它是婴儿死亡的主要原因,需要早期诊断以便及时干预。超声产前筛查是 CHD 检测的主要方法。然而,其有效性严重依赖于医生的专业知识,导致主观解释和潜在的漏诊。因此,非常需要一种用于自动分析胎儿心脏超声图像的方法,以协助进行客观有效的 CHD 诊断。
在这项研究中,我们提出了一种基于深度学习的框架,用于识别和分割胎儿心脏超声三血管切面(3VV)中的肺动脉、主动脉和上腔静脉。在框架的第一阶段,使用对象检测模型 Yolov5 识别三个血管并定位原始全尺寸超声图像中的感兴趣区域(ROI)。随后,在第二阶段应用配备我们新颖的 AMFF(注意多尺度特征融合)模块的修改后的 Deeplabv3 来分割裁剪后的 ROI 图像中的三个血管。
我们使用包含 511 个胎儿心脏 3VV 图像的数据集评估了我们的方法。与现有模型相比,我们的框架在所有三个血管的分割方面表现出更好的性能,PA、Ao 和 SVC 的 Dice 系数分别为 85.55%、89.12%和 77.54%。
我们的实验结果表明,我们提出的框架可以自动准确地检测和分割胎儿心脏 3VV 图像中的三个血管。该方法有可能帮助超声医师提高胎儿心脏检查中血管评估的精度。