Suppr超能文献

知识蒸馏在胎儿心脏超声三血管视图细粒度分割中的应用。

The Application of Knowledge Distillation toward Fine-Grained Segmentation for Three-Vessel View of Fetal Heart Ultrasound Images.

机构信息

School of Mathematical Sciences, Zhejiang University, Hangzhou, China.

Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.

出版信息

Comput Intell Neurosci. 2022 Jul 14;2022:1765550. doi: 10.1155/2022/1765550. eCollection 2022.

Abstract

OBJECTIVES

Measuring anatomical parameters in fetal heart ultrasound images is crucial for the diagnosis of congenital heart disease (CHD), which is highly dependent on the clinical experience of the sonographer. To address this challenge, we propose an automated segmentation method using the channel-wise knowledge distillation technique.

METHODS

We design a teacher-student architecture to conduct channel-wise knowledge distillation. ROI-based cropped images and full-size images are used for the teacher and student models, respectively. It allows the student model to have both the fine-grained segmentation capability inherited from the teacher model and the ability to handle full-size test images. A total of 1,300 fetal heart ultrasound images of three-vessel view were collected and annotated by experienced doctors for training, validation, and testing.

RESULTS

We use three evaluation protocols to quantitatively evaluate the segmentation accuracy: Intersection over Union (IoU), Pixel Accuracy (PA), and Dice coefficient (Dice). We achieved better results than related methods on all evaluation metrics. In comparison with DeepLabv3+, the proposed method gets more accurate segmentation boundaries and has performance gains of 1.8% on mean IoU (66.8% to 68.6%), 2.2% on mean PA (79.2% to 81.4%), and 1.2% on mean Dice (80.1% to 81.3%).

CONCLUSIONS

Our segmentation method could identify the anatomical structure in three-vessel view of fetal heart ultrasound images. Both quantitative and visual analyses show that the proposed method significantly outperforms the related methods in terms of segmentation results.

摘要

目的

测量胎儿心脏超声图像中的解剖参数对于先天性心脏病(CHD)的诊断至关重要,而这高度依赖于超声医师的临床经验。为了解决这一挑战,我们提出了一种使用通道知识蒸馏技术的自动分割方法。

方法

我们设计了一个教师-学生架构来进行通道知识蒸馏。基于感兴趣区域(ROI)裁剪的图像和全尺寸图像分别用于教师模型和学生模型。这使得学生模型既能继承教师模型的细粒度分割能力,又能处理全尺寸测试图像。我们总共收集了 1300 张三血管视图的胎儿心脏超声图像,并由经验丰富的医生进行标注,用于训练、验证和测试。

结果

我们使用三个评估协议来定量评估分割准确性:交并比(IoU)、像素准确率(PA)和骰子系数(Dice)。与相关方法相比,我们在所有评估指标上都取得了更好的结果。与 DeepLabv3+相比,所提出的方法在分割边界上更加准确,在平均 IoU(从 66.8%提高到 68.6%)、平均 PA(从 79.2%提高到 81.4%)和平均 Dice(从 80.1%提高到 81.3%)上均有 1.8%、2.2%和 1.2%的性能提升。

结论

我们的分割方法能够识别胎儿心脏超声三血管视图中的解剖结构。无论是定量分析还是视觉分析,都表明所提出的方法在分割结果上明显优于相关方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8635/9303103/9467eee20ada/CIN2022-1765550.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验