Sukkabot Worasak
Department of Physics, Faculty of Science, Ubon Ratchathani University, 85 Sathollmark Rd. Warinchamrab, Ubon Ratchathani 34190, Thailand.
Phys Chem Chem Phys. 2024 Apr 17;26(15):11807-11814. doi: 10.1039/d4cp00353e.
Using the atomistic tight-binding model plus sp-d exchange term, the embedding of magnetic ions into CdSe/CdMnS core/shell nanoplatelets (NPLs) at different effective temperatures resulted in sp-d exchange interactions, which in turn cause modifications in electronic and magnetic characteristics. The influence of CdMnS monolayers on single-particle spectra, optical band gaps, wave function overlaps and exciton binding energies is more pronounced than that of the effective temperature. Due to the electron, hole and Zeeman splitting energies, with the growth of CdMnS shell monolayers, electron -factor values are unchanged, but hole and exciton -factor values are enhanced. Additionally, all values decrease with increasing temperature, thus representing decreased magnetization of the paramagnetic system. By changing nanoplatelet architectures and temperatures, manipulation of s-d and p-d exchange interactions is accomplished. Overall, studied materials combine the merits of NPLs and magnetic ions, hence leading to alternate possibilities for active applications in spin-based devices.
使用原子紧束缚模型加上sp-d交换项,在不同有效温度下将磁性离子嵌入CdSe/CdMnS核/壳纳米片(NPLs)中会导致sp-d交换相互作用,进而引起电子和磁性特性的改变。CdMnS单层对单粒子光谱、光学带隙、波函数重叠和激子结合能的影响比有效温度的影响更为显著。由于电子、空穴和塞曼分裂能,随着CdMnS壳层单层的生长,电子因子值不变,但空穴和激子因子值增强。此外,所有值都随温度升高而降低,从而表明顺磁系统的磁化强度降低。通过改变纳米片结构和温度,可以实现对s-d和p-d交换相互作用的调控。总体而言,所研究的材料结合了NPLs和磁性离子的优点,因此为基于自旋的器件的有源应用带来了更多可能性。