Suppr超能文献

基于 dCas12a 的双功能碱基编辑器的多路复用原位诱变。

Multiplexed in-situ mutagenesis driven by a dCas12a-based dual-function base editor.

机构信息

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.

Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.

出版信息

Nucleic Acids Res. 2024 May 8;52(8):4739-4755. doi: 10.1093/nar/gkae228.

Abstract

Mutagenesis driving genetic diversity is vital for understanding and engineering biological systems. However, the lack of effective methods to generate in-situ mutagenesis in multiple genomic loci combinatorially limits the study of complex biological functions. Here, we design and construct MultiduBE, a dCas12a-based multiplexed dual-function base editor, in an all-in-one plasmid for performing combinatorial in-situ mutagenesis. Two synthetic effectors, duBE-1a and duBE-2b, are created by amalgamating the functionalities of cytosine deaminase (from hAPOBEC3A or hAID*Δ ), adenine deaminase (from TadA9), and crRNA array processing (from dCas12a). Furthermore, introducing the synthetic separator Sp4 minimizes interference in the crRNA array, thereby facilitating multiplexed in-situ mutagenesis in both Escherichia coli and Bacillus subtilis. Guided by the corresponding crRNA arrays, MultiduBE is successfully employed for cell physiology reprogramming and metabolic regulation. A novel mutation conferring streptomycin resistance has been identified in B. subtilis and incorporated into the mutant strains with multiple antibiotic resistance. Moreover, surfactin and riboflavin titers of the combinatorially mutant strains improved by 42% and 15-fold, respectively, compared with the control strains with single gene mutation. Overall, MultiduBE provides a convenient and efficient way to perform multiplexed in-situ mutagenesis.

摘要

基因突变驱动遗传多样性对于理解和工程化生物系统至关重要。然而,缺乏在多个基因组位点中有效产生原位突变的方法,极大地限制了对复杂生物功能的研究。在这里,我们设计并构建了一种基于 dCas12a 的多路复用双功能碱基编辑器 MultiduBE,该编辑器位于一个一体式质粒中,用于进行组合式原位突变。两个合成效应子 duBE-1a 和 duBE-2b 通过融合胞嘧啶脱氨酶(来自 hAPOBEC3A 或 hAID*Δ)、腺嘌呤脱氨酶(来自 TadA9)和 crRNA 阵列处理(来自 dCas12a)的功能而构建。此外,引入合成分隔符 Sp4 可以最小化 crRNA 阵列的干扰,从而促进大肠杆菌和枯草芽孢杆菌中的多路复用原位突变。通过相应的 crRNA 阵列,MultiduBE 成功用于细胞生理学重编程和代谢调控。在枯草芽孢杆菌中鉴定出一种赋予链霉素抗性的新突变,并将其与具有多种抗生素抗性的突变株结合。此外,与具有单个基因突变的对照菌株相比,组合突变株的表面活性剂和核黄素产量分别提高了 42%和 15 倍。总体而言,MultiduBE 为进行多路复用原位突变提供了一种便捷高效的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68d6/11077070/fcc176685b24/gkae228figgra1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验