Suppr超能文献

人工智能在目击证人识别中的应用。

Application of artificial intelligence to eyewitness identification.

机构信息

Department of Psychology, Georgia State University, Atlanta, GA, 30030, USA.

School of Psychological Science, The University of Bristol, Beacon House, Queens Rd, Bristol, BS8 1QU, UK.

出版信息

Cogn Res Princ Implic. 2024 Apr 3;9(1):19. doi: 10.1186/s41235-024-00542-0.

Abstract

Artificial intelligence is already all around us, and its usage will only increase. Knowing its capabilities is critical. A facial recognition system (FRS) is a tool for law enforcement during suspect searches and when presenting photos to eyewitnesses for identification. However, there are no comparisons between eyewitness and FRS accuracy using video, so it is unknown whether FRS face matches are more accurate than eyewitness memory when identifying a perpetrator. Ours is the first application of artificial intelligence to an eyewitness experience, using a comparative psychology approach. As a first step to test system accuracy relative to eyewitness accuracy, participants and an open-source FRS (FaceNet) attempted perpetrator identification/match from lineup photos (target-present, target-absent) after exposure to real crime videos with varied clarity and perpetrator race. FRS used video probe images of each perpetrator to achieve similarity ratings for each corresponding lineup member. Using receiver operating characteristic analysis to measure discriminability, FRS performance was superior to eyewitness performance, regardless of video clarity or perpetrator race. Video clarity impacted participant performance, with the unclear videos yielding lower performance than the clear videos. Using confidence-accuracy characteristic analysis to measure reliability (i.e., the likelihood the identified suspect is the actual perpetrator), when the FRS identified faces with the highest similarity values, they were accurate. The results suggest FaceNet, or similarly performing systems, may supplement eyewitness memory for suspect searches and subsequent lineup construction and knowing the system's strengths and weaknesses is critical.

摘要

人工智能已经无处不在,其应用只会越来越广泛。了解其功能至关重要。人脸识别系统(FRS)是执法人员在嫌疑人搜索和向目击者出示照片进行身份识别时的工具。然而,目前还没有使用视频比较目击者和 FRS 准确性的研究,因此尚不清楚在识别犯罪者时,FRS 的面部匹配是否比目击者的记忆更准确。我们的研究首次将人工智能应用于目击者体验,采用比较心理学的方法。作为测试系统准确性相对目击者准确性的第一步,参与者和一个开源的 FRS(FaceNet)在观看了不同清晰度和犯罪者种族的真实犯罪视频后,尝试从阵容照片(目标存在、目标不存在)中识别/匹配犯罪者。FRS 使用每个犯罪者的视频探针图像,为每个相应的阵容成员进行相似性评分。使用接收者操作特征分析来衡量可辨别性,无论视频清晰度或犯罪者种族如何,FRS 的性能都优于目击者的性能。视频清晰度影响了参与者的表现,不清晰的视频比清晰的视频产生的表现更差。使用置信度-准确性特征分析来衡量可靠性(即,被识别的嫌疑人是实际犯罪者的可能性),当 FRS 识别出具有最高相似值的面孔时,它们是准确的。结果表明,FaceNet 或性能类似的系统可以辅助目击者进行嫌疑人搜索以及随后的阵容构建,了解系统的优缺点至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/939c/10991253/3de0770f1628/41235_2024_542_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验