Suppr超能文献

基于魁北克省健康管理数据预测自杀风险的可解释人工智能模型。

Explainable artificial intelligence models for predicting risk of suicide using health administrative data in Quebec.

机构信息

Institut Intelligence et Données (IID), Université Laval, Québec, Québec, Canada.

Institut National de Santé Publique du Québec (INSPQ), Québec, Québec, Canada.

出版信息

PLoS One. 2024 Apr 3;19(4):e0301117. doi: 10.1371/journal.pone.0301117. eCollection 2024.

Abstract

Suicide is a complex, multidimensional event, and a significant challenge for prevention globally. Artificial intelligence (AI) and machine learning (ML) have emerged to harness large-scale datasets to enhance risk detection. In order to trust and act upon the predictions made with ML, more intuitive user interfaces must be validated. Thus, Interpretable AI is one of the crucial directions which could allow policy and decision makers to make reasonable and data-driven decisions that can ultimately lead to better mental health services planning and suicide prevention. This research aimed to develop sex-specific ML models for predicting the population risk of suicide and to interpret the models. Data were from the Quebec Integrated Chronic Disease Surveillance System (QICDSS), covering up to 98% of the population in the province of Quebec and containing data for over 20,000 suicides between 2002 and 2019. We employed a case-control study design. Individuals were considered cases if they were aged 15+ and had died from suicide between January 1st, 2002, and December 31st, 2019 (n = 18339). Controls were a random sample of 1% of the Quebec population aged 15+ of each year, who were alive on December 31st of each year, from 2002 to 2019 (n = 1,307,370). We included 103 features, including individual, programmatic, systemic, and community factors, measured up to five years prior to the suicide events. We trained and then validated the sex-specific predictive risk model using supervised ML algorithms, including Logistic Regression (LR), Random Forest (RF), Extreme Gradient Boosting (XGBoost) and Multilayer perceptron (MLP). We computed operating characteristics, including sensitivity, specificity, and Positive Predictive Value (PPV). We then generated receiver operating characteristic (ROC) curves to predict suicides and calibration measures. For interpretability, Shapley Additive Explanations (SHAP) was used with the global explanation to determine how much the input features contribute to the models' output and the largest absolute coefficients. The best sensitivity was 0.38 with logistic regression for males and 0.47 with MLP for females; the XGBoost Classifier with 0.25 for males and 0.19 for females had the best precision (PPV). This study demonstrated the useful potential of explainable AI models as tools for decision-making and population-level suicide prevention actions. The ML models included individual, programmatic, systemic, and community levels variables available routinely to decision makers and planners in a public managed care system. Caution shall be exercised in the interpretation of variables associated in a predictive model since they are not causal, and other designs are required to establish the value of individual treatments. The next steps are to produce an intuitive user interface for decision makers, planners and other stakeholders like clinicians or representatives of families and people with live experience of suicidal behaviors or death by suicide. For example, how variations in the quality of local area primary care programs for depression or substance use disorders or increased in regional mental health and addiction budgets would lower suicide rates.

摘要

自杀是一个复杂的、多维的事件,也是全球预防自杀的重大挑战。人工智能(AI)和机器学习(ML)已经出现,能够利用大规模数据集来提高风险检测能力。为了信任和依据 ML 做出的预测并采取行动,必须对更直观的用户界面进行验证。因此,可解释 AI 是一个关键方向,它可以让政策制定者和决策者做出合理的数据驱动决策,最终可以更好地规划精神卫生服务和预防自杀。本研究旨在开发用于预测自杀人群风险的特定性别 ML 模型,并对模型进行解释。数据来自魁北克综合慢性疾病监测系统(QICDSS),该系统涵盖了魁北克省 98%以上的人口,并包含了 2002 年至 2019 年间超过 20,000 例自杀的数据。我们采用病例对照研究设计。如果个体在 2002 年 1 月 1 日至 2019 年 12 月 31 日期间年满 15 岁且死于自杀(n=18339),则将其视为病例。对照组是每年随机抽取的 1%的 15 岁以上的魁北克人口,并且在每年的 12 月 31 日仍然存活(n=1,307,370)。我们纳入了 103 个特征,包括个体、项目、系统和社区因素,这些因素的测量时间在自杀事件发生前五年内。我们使用监督 ML 算法(包括逻辑回归(LR)、随机森林(RF)、极端梯度提升(XGBoost)和多层感知器(MLP))训练和验证特定性别预测风险模型。我们计算了包括敏感性、特异性和阳性预测值(PPV)在内的操作特征。然后,我们生成了预测自杀的接收者操作特征(ROC)曲线和校准指标。为了可解释性,我们使用 Shapley Additive Explanations(SHAP)与全局解释一起确定输入特征对模型输出的贡献程度以及最大绝对系数。对于男性,逻辑回归的最佳敏感性为 0.38,MLP 为 0.47;对于男性,XGBoost 分类器的最佳精度(PPV)为 0.25,对于女性,最佳精度为 0.19。这项研究表明,可解释的 AI 模型作为决策和人群层面预防自杀行动的工具具有有用的潜力。ML 模型包括决策者和规划者在公共管理式医疗保健系统中常规获得的个人、项目、系统和社区层面的变量。在解释预测模型中关联的变量时应谨慎,因为它们不是因果关系的,需要其他设计来确定个体治疗的价值。下一步是为决策者、规划者和其他利益相关者(如临床医生或有过自杀行为或自杀死亡经历的家庭代表)制作直观的用户界面。例如,当地初级保健计划治疗抑郁症或药物使用障碍的质量变化,或者增加区域精神卫生和成瘾预算如何降低自杀率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验