Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 211198, China.
Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210023, China.
Adv Sci (Weinh). 2024 Jun;11(23):e2401047. doi: 10.1002/advs.202401047. Epub 2024 Apr 3.
Cuproptosis is an emerging cell death pathway that depends on the intracellular Cu ions. Elesclomol (ES) as an efficient Cu ionophore can specifically transport Cu into mitochondria and trigger cuproptosis. However, ES can be rapidly removed and metabolized during intravenous administration, leading to a short half-life and limited tumor accumulation, which hampers its clinical application. Here, the study develops a reactive oxygen species (ROS)-responsive polymer (PCP) based on cinnamaldehyde (CA) and polyethylene glycol (PEG) to encapsulate ES-Cu compound (EC), forming ECPCP. ECPCP significantly prolongs the systemic circulation of EC and enhances its tumor accumulation. After cellular internalization, the PCP coating stimulatingly dissociates exposing to the high-level ROS, and releases ES and Cu, thereby triggering cell death via cuproptosis. Meanwhile, Cu-stimulated Fenton-like reaction together with CA-stimulated ROS production simultaneously breaks the redox homeostasis, which compensates for the insufficient oxidative stress treated with ES alone, in turn inducing immunogenic cell death of tumor cells, achieving simultaneous cuproptosis and immunotherapy. Furthermore, the excessive ROS accelerates the stimuli-dissociation of ECPCP, forming a positive feedback therapy loop against tumor self-alleviation. Therefore, ECPCP as a nanoplatform for cuproptosis and immunotherapy improves the dual antitumor mechanism of ES and provides a potential optimization for ES clinical application.
铜死亡是一种依赖于细胞内铜离子的新兴细胞死亡途径。依立雄胺(ES)作为一种有效的铜离子载体,可以将铜特异性地转运到线粒体中,并引发铜死亡。然而,ES 在静脉给药时会迅速被清除和代谢,导致半衰期短且肿瘤积累有限,这限制了其临床应用。在这里,研究人员开发了一种基于肉桂醛(CA)和聚乙二醇(PEG)的活性氧(ROS)响应性聚合物(PCP)来包裹 ES-Cu 化合物(EC),形成 ECPCP。ECPCP 显著延长了 EC 的系统循环时间并增强了其肿瘤积累。在细胞内化后,PCP 涂层刺激解离,暴露出高水平的 ROS,并释放 ES 和 Cu,从而通过铜死亡引发细胞死亡。同时,Cu 刺激的芬顿样反应和 CA 刺激的 ROS 产生共同破坏了氧化还原稳态,这弥补了单独使用 ES 治疗时氧化应激不足的问题,进而诱导肿瘤细胞发生免疫原性细胞死亡,实现铜死亡和免疫治疗的同步。此外,过量的 ROS 加速了 ECPCP 的刺激解离,形成了针对肿瘤自我缓解的正反馈治疗循环。因此,作为铜死亡和免疫治疗的纳米平台,ECPCP 改善了 ES 的双重抗肿瘤机制,并为 ES 的临床应用提供了一种潜在的优化策略。