Suppr超能文献

岭回归正则化:数据科学中的一个重要概念。

Ridge Regularization: An Essential Concept in Data Science.

作者信息

Hastie Trevor

机构信息

Department of Statistics, Department of Biomedical Data Science, Stanford University, Stanford, CA.

出版信息

Technometrics. 2020;62(4):426-433. doi: 10.1080/00401706.2020.1791959. Epub 2020 Aug 10.

Abstract

Ridge or more formally regularization shows up in many areas of statistics and machine learning. It is one of those essential devices that any good data scientist needs to master for their craft. In this brief , I have collected together some of the magic and beauty of ridge that my colleagues and I have encountered over the past 40 years in applied statistics.

摘要

岭回归,或者更正式地说正则化,在统计学和机器学习的许多领域都有出现。它是任何优秀的数据科学家在其专业领域都需要掌握的重要工具之一。在本简报中,我汇集了过去40年里我和同事们在应用统计学中所遇到的岭回归的一些奇妙之处和魅力所在。

相似文献

1
Ridge Regularization: An Essential Concept in Data Science.岭回归正则化:数据科学中的一个重要概念。
Technometrics. 2020;62(4):426-433. doi: 10.1080/00401706.2020.1791959. Epub 2020 Aug 10.
2
Minipatch Learning as Implicit Ridge-Like Regularization.作为隐式类岭正则化的微补丁学习
Int Conf Big Data Smart Comput. 2021 Jan;2021. doi: 10.1109/bigcomp51126.2021.00021. Epub 2021 Mar 10.
9
An Accelerated Maximally Split ADMM for a Class of Generalized Ridge Regression.一类广义岭回归的加速最大分裂交替方向乘子法
IEEE Trans Neural Netw Learn Syst. 2023 Feb;34(2):958-972. doi: 10.1109/TNNLS.2021.3104840. Epub 2023 Feb 3.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验