Almazroi Abdulwahab Ali, Ayub Nasir
Department of Information Technology, College of Computing and Information Technology at Khulais, University of Jeddah, Jeddah, 21959, Saudi Arabia.
Department of Creative Technologies, Air University Islamabad, Islamabad, 44000, Pakistan.
Sci Rep. 2024 Apr 3;14(1):7838. doi: 10.1038/s41598-024-57864-8.
The rapid expansion of AI-enabled Internet of Things (IoT) devices presents significant security challenges, impacting both privacy and organizational resources. The dynamic increase in big data generated by IoT devices poses a persistent problem, particularly in making decisions based on the continuously growing data. To address this challenge in a dynamic environment, this study introduces a specialized BERT-based Feed Forward Neural Network Framework (BEFNet) designed for IoT scenarios. In this evaluation, a novel framework with distinct modules is employed for a thorough analysis of 8 datasets, each representing a different type of malware. BEFSONet is optimized using the Spotted Hyena Optimizer (SO), highlighting its adaptability to diverse shapes of malware data. Thorough exploratory analyses and comparative evaluations underscore BEFSONet's exceptional performance metrics, achieving 97.99% accuracy, 97.96 Matthews Correlation Coefficient, 97% F1-Score, 98.37% Area under the ROC Curve(AUC-ROC), and 95.89 Cohen's Kappa. This research positions BEFSONet as a robust defense mechanism in the era of IoT security, offering an effective solution to evolving challenges in dynamic decision-making environments.
人工智能支持的物联网(IoT)设备的迅速扩张带来了重大安全挑战,对隐私和组织资源都产生了影响。物联网设备产生的大数据的动态增长带来了一个持续存在的问题,特别是在基于不断增长的数据进行决策时。为了在动态环境中应对这一挑战,本研究引入了一种专门为物联网场景设计的基于BERT的前馈神经网络框架(BEFNet)。在本次评估中,采用了一个具有不同模块的新颖框架,对8个数据集进行了全面分析,每个数据集代表一种不同类型的恶意软件。BEFSONet使用斑鬣狗优化器(SO)进行了优化,突出了其对各种形状的恶意软件数据的适应性。深入的探索性分析和比较评估强调了BEFSONet卓越的性能指标,准确率达到97.99%,马修斯相关系数为97.96,F1分数为97%,ROC曲线下面积(AUC-ROC)为98.37%,科恩卡帕系数为95.89。本研究将BEFSONet定位为物联网安全时代的一种强大防御机制,为动态决策环境中不断演变的挑战提供了有效的解决方案。