Suppr超能文献

揭示 SARS-CoV-2 基因组中的隐藏结构模式:计算洞察与比较分析。

Unveiling hidden structural patterns in the SARS-CoV-2 genome: Computational insights and comparative analysis.

机构信息

Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada.

出版信息

PLoS One. 2024 Apr 4;19(4):e0298164. doi: 10.1371/journal.pone.0298164. eCollection 2024.

Abstract

SARS-CoV-2, the causative agent of COVID-19, is known to exhibit secondary structures in its 5' and 3' untranslated regions, along with the frameshifting stimulatory element situated between ORF1a and 1b. To identify additional regions containing conserved structures, we utilized a multiple sequence alignment with related coronaviruses as a starting point. We applied a computational pipeline developed for identifying non-coding RNA elements. Our pipeline employed three different RNA structural prediction approaches. We identified forty genomic regions likely to harbor structures, with ten of them showing three-way consensus substructure predictions among our predictive utilities. We conducted intracomparisons of the predictive utilities within the pipeline and intercomparisons with four previously published SARS-CoV-2 structural datasets. While there was limited agreement on the precise structure, different approaches seemed to converge on regions likely to contain structures in the viral genome. By comparing and combining various computational approaches, we can predict regions most likely to form structures, as well as a probable structure or ensemble of structures. These predictions can be used to guide surveillance, prophylactic measures, or therapeutic efforts. Data and scripts employed in this study may be found at https://doi.org/10.5281/zenodo.8298680.

摘要

SARS-CoV-2,即 COVID-19 的病原体,已知在其 5'和 3'非翻译区存在二级结构,以及位于 ORF1a 和 1b 之间的移码刺激元件。为了鉴定包含保守结构的其他区域,我们利用与相关冠状病毒的多重序列比对作为起点。我们应用了一种用于鉴定非编码 RNA 元件的计算管道。我们的管道采用了三种不同的 RNA 结构预测方法。我们鉴定了四十个可能含有结构的基因组区域,其中十个在我们的预测工具中显示了三向一致的亚结构预测。我们对管道内的预测工具进行了内部比较,并与四个先前发表的 SARS-CoV-2 结构数据集进行了比较。虽然在精确结构上存在有限的一致性,但不同的方法似乎集中在病毒基因组中可能含有结构的区域上。通过比较和组合各种计算方法,我们可以预测最有可能形成结构的区域,以及可能的结构或结构组合。这些预测可以用于指导监测、预防措施或治疗工作。本研究中使用的数据和脚本可在 https://doi.org/10.5281/zenodo.8298680 找到。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36fd/10994416/dfefbbc02fbb/pone.0298164.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验