Liao Kuang-Ming, Cheng Kuo-Chen, Sung Mei-I, Shen Yu-Ting, Chiu Chong-Chi, Liu Chung-Feng, Ko Shian-Chin
Department of Internal Medicine, Chi Mei Medical Center, Chiali, Tainan 722013, Taiwan.
Department of Nursing, Min-Hwei Junior College of Health Care Management, Tainan 73658, Taiwan.
iScience. 2024 Mar 20;27(4):109542. doi: 10.1016/j.isci.2024.109542. eCollection 2024 Apr 19.
In this research, we aimed to harness machine learning to predict the imminent risk of acute exacerbation in chronic obstructive pulmonary disease (AECOPD) patients. Utilizing retrospective data from electronic medical records of two Taiwanese hospitals, we identified 26 critical features. To predict 3- and 6-month AECOPD occurrences, we deployed five distinct machine learning algorithms alongside ensemble learning. The 3-month risk prediction was best realized by the XGBoost model, achieving an AUC of 0.795, whereas the XGBoost was superior for the 6-month prediction with an AUC of 0.813. We conducted an explainability analysis and found that the episode of AECOPD, mMRC score, CAT score, respiratory rate, and the use of inhaled corticosteroids were the most impactful features. Notably, our approach surpassed predictions that relied solely on CAT or mMRC scores. Accordingly, we designed an interactive prediction system that provides physicians with a practical tool to predict near-term AECOPD risk in outpatients.
在本研究中,我们旨在利用机器学习预测慢性阻塞性肺疾病(AECOPD)患者急性加重的近期风险。利用两家台湾医院电子病历中的回顾性数据,我们确定了26个关键特征。为了预测3个月和6个月内AECOPD的发生情况,我们部署了五种不同的机器学习算法以及集成学习。XGBoost模型对3个月风险预测的效果最佳,曲线下面积(AUC)为0.795,而在6个月预测中XGBoost更具优势,AUC为0.813。我们进行了可解释性分析,发现AECOPD发作、改良英国医学研究委员会(mMRC)评分、慢性阻塞性肺疾病评估测试(CAT)评分、呼吸频率以及吸入性糖皮质激素的使用是最具影响力的特征。值得注意的是,我们的方法优于仅依赖CAT或mMRC评分的预测。因此,我们设计了一个交互式预测系统,为医生提供了一个实用工具,以预测门诊患者近期AECOPD风险。