Suppr超能文献

基于全国电子病历的实用机器学习方法预测门诊患者近期慢性阻塞性肺疾病急性加重

Machine learning approaches for practical predicting outpatient near-future AECOPD based on nationwide electronic medical records.

作者信息

Liao Kuang-Ming, Cheng Kuo-Chen, Sung Mei-I, Shen Yu-Ting, Chiu Chong-Chi, Liu Chung-Feng, Ko Shian-Chin

机构信息

Department of Internal Medicine, Chi Mei Medical Center, Chiali, Tainan 722013, Taiwan.

Department of Nursing, Min-Hwei Junior College of Health Care Management, Tainan 73658, Taiwan.

出版信息

iScience. 2024 Mar 20;27(4):109542. doi: 10.1016/j.isci.2024.109542. eCollection 2024 Apr 19.

Abstract

In this research, we aimed to harness machine learning to predict the imminent risk of acute exacerbation in chronic obstructive pulmonary disease (AECOPD) patients. Utilizing retrospective data from electronic medical records of two Taiwanese hospitals, we identified 26 critical features. To predict 3- and 6-month AECOPD occurrences, we deployed five distinct machine learning algorithms alongside ensemble learning. The 3-month risk prediction was best realized by the XGBoost model, achieving an AUC of 0.795, whereas the XGBoost was superior for the 6-month prediction with an AUC of 0.813. We conducted an explainability analysis and found that the episode of AECOPD, mMRC score, CAT score, respiratory rate, and the use of inhaled corticosteroids were the most impactful features. Notably, our approach surpassed predictions that relied solely on CAT or mMRC scores. Accordingly, we designed an interactive prediction system that provides physicians with a practical tool to predict near-term AECOPD risk in outpatients.

摘要

在本研究中,我们旨在利用机器学习预测慢性阻塞性肺疾病(AECOPD)患者急性加重的近期风险。利用两家台湾医院电子病历中的回顾性数据,我们确定了26个关键特征。为了预测3个月和6个月内AECOPD的发生情况,我们部署了五种不同的机器学习算法以及集成学习。XGBoost模型对3个月风险预测的效果最佳,曲线下面积(AUC)为0.795,而在6个月预测中XGBoost更具优势,AUC为0.813。我们进行了可解释性分析,发现AECOPD发作、改良英国医学研究委员会(mMRC)评分、慢性阻塞性肺疾病评估测试(CAT)评分、呼吸频率以及吸入性糖皮质激素的使用是最具影响力的特征。值得注意的是,我们的方法优于仅依赖CAT或mMRC评分的预测。因此,我们设计了一个交互式预测系统,为医生提供了一个实用工具,以预测门诊患者近期AECOPD风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4083/10993192/9f402b3bd65b/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验