Suppr超能文献

机器学习用于预测精神分裂症谱系障碍中的暴力行为:一项系统综述。

Machine Learning for prediction of violent behaviors in schizophrenia spectrum disorders: a systematic review.

作者信息

Parsaei Mohammadamin, Arvin Alireza, Taebi Morvarid, Seyedmirzaei Homa, Cattarinussi Giulia, Sambataro Fabio, Pigoni Alessandro, Brambilla Paolo, Delvecchio Giuseppe

机构信息

Maternal, Fetal & Neonatal Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran.

Center for Orthopedic Trans-disciplinary Applied Research (COTAR), Tehran University of Medical Sciences, Tehran, Iran.

出版信息

Front Psychiatry. 2024 Mar 21;15:1384828. doi: 10.3389/fpsyt.2024.1384828. eCollection 2024.

Abstract

BACKGROUND

Schizophrenia spectrum disorders (SSD) can be associated with an increased risk of violent behavior (VB), which can harm patients, others, and properties. Prediction of VB could help reduce the SSD burden on patients and healthcare systems. Some recent studies have used machine learning (ML) algorithms to identify SSD patients at risk of VB. In this article, we aimed to review studies that used ML to predict VB in SSD patients and discuss the most successful ML methods and predictors of VB.

METHODS

We performed a systematic search in PubMed, Web of Sciences, Embase, and PsycINFO on September 30, 2023, to identify studies on the application of ML in predicting VB in SSD patients.

RESULTS

We included 18 studies with data from 11,733 patients diagnosed with SSD. Different ML models demonstrated mixed performance with an area under the receiver operating characteristic curve of 0.56-0.95 and an accuracy of 50.27-90.67% in predicting violence among SSD patients. Our comparative analysis demonstrated a superior performance for the gradient boosting model, compared to other ML models in predicting VB among SSD patients. Various sociodemographic, clinical, metabolic, and neuroimaging features were associated with VB, with age and olanzapine equivalent dose at the time of discharge being the most frequently identified factors.

CONCLUSION

ML models demonstrated varied VB prediction performance in SSD patients, with gradient boosting outperforming. Further research is warranted for clinical applications of ML methods in this field.

摘要

背景

精神分裂症谱系障碍(SSD)可能与暴力行为(VB)风险增加有关,暴力行为会对患者、他人及财产造成伤害。预测暴力行为有助于减轻SSD对患者和医疗系统的负担。最近一些研究使用机器学习(ML)算法来识别有暴力行为风险的SSD患者。在本文中,我们旨在回顾使用ML预测SSD患者暴力行为的研究,并讨论最成功的ML方法和暴力行为预测因素。

方法

2023年9月30日,我们在PubMed、科学网、Embase和PsycINFO中进行了系统检索,以识别关于ML在预测SSD患者暴力行为中的应用的研究。

结果

我们纳入了18项研究,数据来自11733例被诊断为SSD的患者。不同的ML模型表现各异,在预测SSD患者暴力行为时,受试者工作特征曲线下面积为0.56 - 0.95,准确率为50.27% - 90.67%。我们的比较分析表明,与其他ML模型相比,梯度提升模型在预测SSD患者暴力行为方面表现更优。各种社会人口统计学、临床、代谢和神经影像学特征与暴力行为相关,年龄和出院时奥氮平等效剂量是最常确定的因素。

结论

ML模型在SSD患者暴力行为预测中表现出不同的性能,梯度提升模型表现更优。该领域ML方法的临床应用值得进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15af/10991827/2f057ed3d310/fpsyt-15-1384828-g001.jpg

相似文献

1
Machine Learning for prediction of violent behaviors in schizophrenia spectrum disorders: a systematic review.
Front Psychiatry. 2024 Mar 21;15:1384828. doi: 10.3389/fpsyt.2024.1384828. eCollection 2024.
3
[Three clinical risk profiles of violent behavior in a cohort of early psychosis patients].
Encephale. 2019 Jun;45(3):214-220. doi: 10.1016/j.encep.2018.08.003. Epub 2018 Nov 13.
4
Identification of violent patients with schizophrenia using a hybrid machine learning approach at the individual level.
Psychiatry Res. 2021 Dec;306:114294. doi: 10.1016/j.psychres.2021.114294. Epub 2021 Nov 17.
6
The use of machine learning on administrative and survey data to predict suicidal thoughts and behaviors: a systematic review.
Front Psychiatry. 2024 Mar 4;15:1291362. doi: 10.3389/fpsyt.2024.1291362. eCollection 2024.
7
Cognitive and clinical characteristics of offenders and non-offenders diagnosed with schizophrenia spectrum disorders: results of the Recoviwel observational study.
Eur Arch Psychiatry Clin Neurosci. 2023 Sep;273(6):1307-1316. doi: 10.1007/s00406-022-01510-9. Epub 2022 Oct 30.
8
Violent and non-violent offending in patients with schizophrenia: Exploring influences and differences via machine learning.
Compr Psychiatry. 2021 May;107:152238. doi: 10.1016/j.comppsych.2021.152238. Epub 2021 Mar 9.
9
Prediction of physical violence in schizophrenia with machine learning algorithms.
Psychiatry Res. 2020 Jul;289:112960. doi: 10.1016/j.psychres.2020.112960. Epub 2020 Apr 13.
10
Magnetic resonance imaging-based machine learning classification of schizophrenia spectrum disorders: a meta-analysis.
Psychiatry Clin Neurosci. 2024 Dec;78(12):732-743. doi: 10.1111/pcn.13736. Epub 2024 Sep 18.

引用本文的文献

本文引用的文献

1
White matter alterations in affective and non-affective early psychosis: A diffusion MRI study.
J Affect Disord. 2024 Apr 15;351:615-623. doi: 10.1016/j.jad.2024.01.238. Epub 2024 Jan 28.
2
Using machine learning to forecast domestic homicide via police data and super learning.
Sci Rep. 2023 Dec 21;13(1):22932. doi: 10.1038/s41598-023-50274-2.
4
Classification of suicidality by training supervised machine learning models with brain MRI findings: A systematic review.
J Affect Disord. 2023 Nov 1;340:766-791. doi: 10.1016/j.jad.2023.08.034. Epub 2023 Aug 9.
5
Offenders and non-offenders with schizophrenia spectrum disorders: Do they really differ in known risk factors for aggression?
Front Psychiatry. 2023 Apr 17;14:1145644. doi: 10.3389/fpsyt.2023.1145644. eCollection 2023.
6
Application of machine learning in predicting aggressive behaviors from hospitalized patients with schizophrenia.
Front Psychiatry. 2023 Mar 20;14:1016586. doi: 10.3389/fpsyt.2023.1016586. eCollection 2023.
7
The HARM models: Predicting longitudinal physical aggression in patients with schizophrenia at an individual level.
J Psychiatr Res. 2023 May;161:91-98. doi: 10.1016/j.jpsychires.2023.02.030. Epub 2023 Mar 1.
9
Violence, neurocognitive function and clinical correlates in patients with schizophrenia.
Front Psychiatry. 2023 Jan 19;13:1087372. doi: 10.3389/fpsyt.2022.1087372. eCollection 2022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验