Green Philippe B, Segura Lecina Ona, Albertini Petru P, Newton Mark A, Kumar Krishna, Boulanger Coline, Leemans Jari, Thompson Paul B J, Loiudice Anna, Buonsanti Raffaella
Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne, Sion CH-1950, Switzerland.
XMaS beamline, United Kingdom CRG, European Synchrotron Radiation Facility, 71, avenue des Martyrs, CS 40220, Grenoble Cedex 9 38043, France.
J Am Chem Soc. 2024 Apr 17;146(15):10708-10715. doi: 10.1021/jacs.4c00538. Epub 2024 Apr 5.
Atomic layer deposition (ALD) is a method to grow thin metal oxide layers on a variety of materials for applications spanning from electronics to catalysis. Extending ALD to colloidally stable nanocrystals promises to combine the benefits of thin metal oxide coatings with the solution processability of the nanocrystals. However, challenges persist in applying this method, which relate to finding precursors that promote the growth of the metal oxide while preserving colloidal stability throughout the process. Herein, we introduce a colloidal ALD method to coat nanocrystals with amorphous metal oxide shells using metal and oxygen precursors that act as colloidal stabilizing ligands. Our scheme involves metal-amide precursors modified with solubilizing groups and oleic acid as the oxygen source. The growth of the oxide is self-limiting and proceeds in a layer-by-layer fashion. Our protocol is generalizable and intrinsically scalable. Potential applications in display, light detection, and catalysis are envisioned.
原子层沉积(ALD)是一种在各种材料上生长薄金属氧化物层的方法,其应用范围涵盖从电子到催化等多个领域。将ALD扩展到胶体稳定的纳米晶体有望将薄金属氧化物涂层的优点与纳米晶体的溶液可加工性相结合。然而,应用该方法仍存在挑战,这些挑战涉及找到能促进金属氧化物生长同时在整个过程中保持胶体稳定性的前驱体。在此,我们介绍一种胶体ALD方法,使用作为胶体稳定配体的金属和氧前驱体,用非晶态金属氧化物壳包覆纳米晶体。我们的方案涉及用增溶基团修饰的金属酰胺前驱体和油酸作为氧源。氧化物的生长是自限性的,并以逐层方式进行。我们的方案具有通用性且本质上可扩展。预计在显示、光检测和催化等方面有潜在应用。