Suppr超能文献

基于多尺度频域滤波器的医学图像分割网络。

Medical image segmentation network based on multi-scale frequency domain filter.

机构信息

School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, PR China.

Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang 621010, China; NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang 621010, PR China.

出版信息

Neural Netw. 2024 Jul;175:106280. doi: 10.1016/j.neunet.2024.106280. Epub 2024 Mar 28.

Abstract

With the development of deep learning, medical image segmentation in computer-aided diagnosis has become a research hotspot. Recently, UNet and its variants have become the most powerful medical image segmentation methods. However, these methods suffer from (1) insufficient sensing field and insufficient depth; (2) computational nonlinearity and redundancy of channel features; and (3) ignoring the interrelationships among feature channels. These problems lead to poor network segmentation performance and weak generalization ability. Therefore, first of all, we propose an effective replacement scheme of UNet base block, Double residual depthwise atrous convolution (DRDAC) block, to effectively improve the deficiency of receptive field and depth. Secondly, a new linear module, the Multi-scale frequency domain filter (MFDF), is designed to capture global information from the frequency domain. The high order multi-scale relationship is extracted by combining the depthwise atrous separable convolution with the frequency domain filter. Finally, a channel attention called Axial selection channel attention (ASCA) is redesigned to enhance the network's ability to model feature channel interrelationships. Further, we design a novel frequency domain medical image segmentation baseline method FDFUNet based on the above modules. We conduct extensive experiments on five publicly available medical image datasets and demonstrate that the present method has stronger segmentation performance as well as generalization ability compared to other state-of-the-art baseline methods.

摘要

随着深度学习的发展,计算机辅助诊断中的医学图像分割已成为研究热点。最近,U-Net 及其变体已成为最强大的医学图像分割方法。然而,这些方法存在(1)感受野不足、深度不够;(2)通道特征的计算非线性和冗余;(3)忽略特征通道之间的相互关系等问题。这些问题导致网络分割性能较差,泛化能力较弱。因此,首先,我们提出了一种有效的 U-Net 基本块替换方案——双残差深度空洞卷积(DRDAC)块,以有效提高感受野和深度的不足。其次,设计了一种新的线性模块——多尺度频域滤波器(MFDF),从频域捕获全局信息。通过将深度空洞可分离卷积与频域滤波器相结合,提取高阶多尺度关系。最后,重新设计了一种称为轴向选择通道注意力(ASCA)的通道注意力,以增强网络对特征通道相互关系的建模能力。进一步,我们基于上述模块设计了一种新颖的频域医学图像分割基线方法 FDFUNet。在五个公开可用的医学图像数据集上进行了广泛的实验,结果表明,与其他最先进的基线方法相比,该方法具有更强的分割性能和泛化能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验