Suppr超能文献

FASNet:辅助诊断医疗系统中基于特征对齐的数字病理图像方法。

FASNet: Feature alignment-based method with digital pathology images in assisted diagnosis medical system.

作者信息

He Keke, Zhu Jun, Li Limiao, Gou Fangfang, Wu Jia

机构信息

School of Computer Science and Engineering, Changsha University, Changsha, 410003, China.

Hunan University of Medicine General Hospital, Huaihua, 418000, China.

出版信息

Heliyon. 2024 Nov 13;10(22):e40350. doi: 10.1016/j.heliyon.2024.e40350. eCollection 2024 Nov 30.

Abstract

Many important information in medical research and clinical diagnosis are obtained from medical images. Among them, digital pathology images can provide detailed tissue structure and cellular information, which has become the gold standard for clinical tumor diagnosis. With the development of neural networks, computer-aided diagnosis presents the identification results of various cell nuclei to doctors, which facilitates the identification of cancerous regions. However, deep learning models require a large amount of annotated data. Pathology images are expensive and difficult to obtain, and insufficient annotation data can easily lead to biased results. In addition, when current models are evaluated on an unknown target domain, there are errors in the predicted boundaries. Based on this, this study proposes a feature alignment-based detail recognition strategy for pathology image segmentation (FASNet). It consists of a preprocessing model and a segmentation network (UNW). The UNW network performs instance normalization and categorical whitening of feature images by inserting semantics-aware normalization and semantics-aware whitening modules into the encoder and decoder, which achieves the compactness of features of the same class and the separation of features of different classes. The FASNet method can identify the feature detail information more efficiently, and thus differentiate between different classes of tissues effectively. The experimental results show that the FASNet method has a Dice Similarity Coefficient (DSC) value of 0.844. It achieves good performance even when faced with test data that does not match the distribution of the training data. Code: https://github.com/zlf010928/FASNet.git.

摘要

医学研究和临床诊断中的许多重要信息都来自医学图像。其中,数字病理图像能够提供详细的组织结构和细胞信息,已成为临床肿瘤诊断的金标准。随着神经网络的发展,计算机辅助诊断将各种细胞核的识别结果呈现给医生,这有助于癌区的识别。然而,深度学习模型需要大量的标注数据。病理图像获取成本高且难度大,标注数据不足容易导致有偏差的结果。此外,当当前模型在未知目标域上进行评估时,预测边界会存在误差。基于此,本研究提出了一种基于特征对齐的病理图像分割细节识别策略(FASNet)。它由一个预处理模型和一个分割网络(UNW)组成。UNW网络通过在编码器和解码器中插入语义感知归一化和语义感知白化模块,对特征图像进行实例归一化和类别白化,实现了同类特征的紧凑性和不同类特征的分离。FASNet方法能够更高效地识别特征细节信息,从而有效地区分不同类别的组织。实验结果表明,FASNet方法的骰子相似系数(DSC)值为0.844。即使面对与训练数据分布不匹配的测试数据,它也能取得良好的性能。代码:https://github.com/zlf010928/FASNet.git。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f582/11609439/cc163e1b8eaf/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验