Suppr超能文献

基于元细胞的差异表达分析鉴定了 COVID-19 患者 PBMC 中细胞类型特异性的时间基因反应程序。

Metacell-based differential expression analysis identifies cell type specific temporal gene response programs in COVID-19 patient PBMCs.

机构信息

Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.

Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA.

出版信息

NPJ Syst Biol Appl. 2024 Apr 5;10(1):36. doi: 10.1038/s41540-024-00364-2.

Abstract

By profiling gene expression in individual cells, single-cell RNA-sequencing (scRNA-seq) can resolve cellular heterogeneity and cell-type gene expression dynamics. Its application to time-series samples can identify temporal gene programs active in different cell types, for example, immune cells' responses to viral infection. However, current scRNA-seq analysis has limitations. One is the low number of genes detected per cell. The second is insufficient replicates (often 1-2) due to high experimental cost. The third lies in the data analysis-treating individual cells as independent measurements leads to inflated statistics. To address these, we explore a new computational framework, specifically whether "metacells" constructed to maintain cellular heterogeneity within individual cell types (or clusters) can be used as "replicates" for increasing statistical rigor. Toward this, we applied SEACells to a time-series scRNA-seq dataset from peripheral blood mononuclear cells (PBMCs) after SARS-CoV-2 infection to construct metacells, and used them in maSigPro for quadratic regression to find significantly differentially expressed genes (DEGs) over time, followed by clustering expression velocity trends. We showed that such metacells retained greater expression variances and produced more biologically meaningful DEGs compared to either metacells generated randomly or from simple pseudobulk methods. More specifically, this approach correctly identified the known ISG15 interferon response program in almost all PBMC cell types and many DEGs enriched in the previously defined SARS-CoV-2 infection response pathway. It also uncovered additional and more cell type-specific temporal gene expression programs. Overall, our results demonstrate that the metacell-pseudoreplicate strategy could potentially overcome the limitation of 1-2 replicates.

摘要

通过对单个细胞的基因表达进行分析,单细胞 RNA 测序(scRNA-seq)可以解决细胞异质性和细胞类型基因表达动态变化的问题。将其应用于时间序列样本可以识别不同细胞类型中活跃的时间基因程序,例如免疫细胞对病毒感染的反应。然而,目前的 scRNA-seq 分析存在一些局限性。一是每个细胞检测到的基因数量有限。二是由于实验成本高,重复次数(通常为 1-2 次)不足。三是数据分析-将单个细胞视为独立的测量值会导致统计数据膨胀。为了解决这些问题,我们探索了一种新的计算框架,特别是构建单个细胞类型(或簇)内维持细胞异质性的“元细胞”是否可以作为增加统计严谨性的“重复”。为此,我们将 SEACells 应用于 SARS-CoV-2 感染后外周血单核细胞(PBMC)的时间序列 scRNA-seq 数据集,构建元细胞,并在 maSigPro 中使用它们进行二次回归,以找到随时间显著差异表达的基因(DEGs),然后进行聚类表达速度趋势。我们表明,与随机或简单的伪群体方法生成的元细胞相比,这种元细胞保留了更大的表达方差,并产生了更具生物学意义的 DEGs。更具体地说,这种方法几乎可以在所有 PBMC 细胞类型中正确识别已知的 ISG15 干扰素反应程序,以及许多在先前定义的 SARS-CoV-2 感染反应途径中富集的 DEGs。它还揭示了其他更多特定于细胞类型的时间基因表达程序。总的来说,我们的研究结果表明,元细胞-伪重复策略可能克服 1-2 次重复的局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4dc/10997786/c7e7ef1198b3/41540_2024_364_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验