Suppr超能文献

类细胞可梳理大型且复杂的单细胞转录组网络。

Metacells untangle large and complex single-cell transcriptome networks.

机构信息

Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.

Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.

出版信息

BMC Bioinformatics. 2022 Aug 13;23(1):336. doi: 10.1186/s12859-022-04861-1.

Abstract

BACKGROUND

Single-cell RNA sequencing (scRNA-seq) technologies offer unique opportunities for exploring heterogeneous cell populations. However, in-depth single-cell transcriptomic characterization of complex tissues often requires profiling tens to hundreds of thousands of cells. Such large numbers of cells represent an important hurdle for downstream analyses, interpretation and visualization.

RESULTS

We develop a framework called SuperCell to merge highly similar cells into metacells and perform standard scRNA-seq data analyses at the metacell level. Our systematic benchmarking demonstrates that metacells not only preserve but often improve the results of downstream analyses including visualization, clustering, differential expression, cell type annotation, gene correlation, imputation, RNA velocity and data integration. By capitalizing on the redundancy inherent to scRNA-seq data, metacells significantly facilitate and accelerate the construction and interpretation of single-cell atlases, as demonstrated by the integration of 1.46 million cells from COVID-19 patients in less than two hours on a standard desktop.

CONCLUSIONS

SuperCell is a framework to build and analyze metacells in a way that efficiently preserves the results of scRNA-seq data analyses while significantly accelerating and facilitating them.

摘要

背景

单细胞 RNA 测序 (scRNA-seq) 技术为探索异质细胞群体提供了独特的机会。然而,对复杂组织进行深入的单细胞转录组学特征分析通常需要对数万到数十万的细胞进行分析。如此大量的细胞代表了下游分析、解释和可视化的一个重要障碍。

结果

我们开发了一个名为 SuperCell 的框架,该框架将高度相似的细胞合并为元细胞,并在元细胞水平上执行标准的 scRNA-seq 数据分析。我们的系统基准测试表明,元细胞不仅保留了下游分析的结果,而且通常还能改善这些结果,包括可视化、聚类、差异表达、细胞类型注释、基因相关性、插补、RNA 速度和数据集成。通过利用 scRNA-seq 数据固有的冗余性,元细胞显著地促进和加速了单细胞图谱的构建和解释,正如在不到两个小时内整合来自 COVID-19 患者的 146 万个细胞,在标准桌面电脑上完成,这证明了这一点。

结论

SuperCell 是一个构建和分析元细胞的框架,它以一种有效保留 scRNA-seq 数据分析结果的方式,同时显著加速和简化这些分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fef8/9375315/45caad0e91ed/12859_2022_4861_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验