Suppr超能文献

基于神经网络方法的肝癌立体定向体部放射治疗中未受累肝脏剂量预测

Uninvolved liver dose prediction in stereotactic body radiation therapy for liver cancer based on the neural network method.

作者信息

Zhang Huai-Wen, Wang You-Hua, Hu Bo, Pang Hao-Wen

机构信息

Department of Radiotherapy, Jiangxi Cancer Hospital, Nanchang 330029, Jiangxi Province, China.

Department of Oncology, Gulin People's Hospital, Luzhou 646500, Sichuan Province, China.

出版信息

World J Gastrointest Oncol. 2024 Oct 15;16(10):4146-4156. doi: 10.4251/wjgo.v16.i10.4146.

Abstract

BACKGROUND

The quality of a radiotherapy plan often depends on the knowledge and expertise of the plan designers.

AIM

To predict the uninvolved liver dose in stereotactic body radiotherapy (SBRT) for liver cancer using a neural network-based method.

METHODS

A total of 114 SBRT plans for liver cancer were used to test the neural network method. Sub-organs of the uninvolved liver were automatically generated. Correlations between the volume of each sub-organ, uninvolved liver dose, and neural network prediction model were established using MATLAB. Of the cases, 70% were selected as the training set, 15% as the validation set, and 15% as the test set. The regression -value and mean square error (MSE) were used to evaluate the model.

RESULTS

The volume of the uninvolved liver was related to the volume of the corresponding sub-organs. For all sets of -values of the prediction model, except for D which was 0.7513, all -values of D-D and D were > 0.8. The MSE of the prediction model was also low.

CONCLUSION

We developed a neural network-based method to predict the uninvolved liver dose in SBRT for liver cancer. It is simple and easy to use and warrants further promotion and application.

摘要

背景

放射治疗计划的质量通常取决于计划设计者的知识和专业技能。

目的

使用基于神经网络的方法预测肝癌立体定向体部放射治疗(SBRT)中未受照射肝脏的剂量。

方法

共使用114个肝癌SBRT计划来测试神经网络方法。自动生成未受照射肝脏的亚器官。使用MATLAB建立每个亚器官体积、未受照射肝脏剂量与神经网络预测模型之间的相关性。在这些病例中,70%被选为训练集,15%为验证集,15%为测试集。使用回归值和均方误差(MSE)评估模型。

结果

未受照射肝脏的体积与相应亚器官的体积相关。对于预测模型的所有 - 值集,除D为0.7513外,D - D和D的所有 - 值均>0.8。预测模型的MSE也较低。

结论

我们开发了一种基于神经网络的方法来预测肝癌SBRT中未受照射肝脏的剂量。该方法简单易用,值得进一步推广应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c701/11514657/8b4ec1d70b65/WJGO-16-4146-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验