Suppr超能文献

一种使用英国生物银行识别阿尔茨海默病快速进展的可解释人群图网络。

An Interpretable Population Graph Network to Identify Rapid Progression of Alzheimer's Disease Using UK Biobank.

作者信息

Meng Weimin, Inampudi Rohit, Zhang Xiang, Xu Jie, Huang Yu, Xie Mingyi, Bian Jiang, Yin Rui

机构信息

Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA.

Department of Computer Science and Engineering, University of Florida, Gainesville, FL, USA.

出版信息

medRxiv. 2024 Mar 28:2024.03.27.24304966. doi: 10.1101/2024.03.27.24304966.

Abstract

Alzheimer's disease (AD) manifests with varying progression rates across individuals, necessitating the understanding of their intricate patterns of cognition decline that could contribute to effective strategies for risk monitoring. In this study, we propose an innovative interpretable population graph network framework for identifying rapid progressors of AD by utilizing patient information from electronic health-related records in the UK Biobank. To achieve this, we first created a patient similarity graph, in which each AD patient is represented as a node; and an edge is established by patient clinical characteristics distance. We used graph neural networks (GNNs) to predict rapid progressors of AD and created a GNN Explainer with SHAP analysis for interpretability. The proposed model demonstrates superior predictive performance over the existing benchmark approaches. We also revealed several clinical features significantly associated with the prediction, which can be used to aid in effective interventions for the progression of AD patients.

摘要

阿尔茨海默病(AD)在个体间的进展速度各不相同,因此有必要了解其复杂的认知衰退模式,这有助于制定有效的风险监测策略。在本研究中,我们提出了一种创新的可解释群体图网络框架,通过利用英国生物银行中与电子健康相关记录中的患者信息来识别AD的快速进展者。为实现这一目标,我们首先创建了一个患者相似性图,其中每个AD患者都表示为一个节点;并通过患者临床特征距离建立边。我们使用图神经网络(GNN)来预测AD的快速进展者,并创建了一个带有SHAP分析的GNN解释器以实现可解释性。所提出的模型在预测性能上优于现有的基准方法。我们还揭示了几个与预测显著相关的临床特征,可用于辅助对AD患者病情进展进行有效干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1008/10996760/eb95080f9454/nihpp-2024.03.27.24304966v1-f0001.jpg

相似文献

1
An Interpretable Population Graph Network to Identify Rapid Progression of Alzheimer's Disease Using UK Biobank.
medRxiv. 2024 Mar 28:2024.03.27.24304966. doi: 10.1101/2024.03.27.24304966.
3
XGBoost-SHAP-based interpretable diagnostic framework for alzheimer's disease.
BMC Med Inform Decis Mak. 2023 Jul 25;23(1):137. doi: 10.1186/s12911-023-02238-9.
4
Self-guided Knowledge-Injected Graph Neural Network for Alzheimer's Diseases.
Med Image Comput Comput Assist Interv. 2024 Oct;15002:378-388. doi: 10.1007/978-3-031-72069-7_36. Epub 2024 Oct 4.
6
Comorbidity-based framework for Alzheimer's disease classification using graph neural networks.
Sci Rep. 2024 Sep 10;14(1):21061. doi: 10.1038/s41598-024-72321-2.
7
Co-embedding of edges and nodes with deep graph convolutional neural networks.
Sci Rep. 2023 Oct 8;13(1):16966. doi: 10.1038/s41598-023-44224-1.
9
CI-GNN: A Granger causality-inspired graph neural network for interpretable brain network-based psychiatric diagnosis.
Neural Netw. 2024 Apr;172:106147. doi: 10.1016/j.neunet.2024.106147. Epub 2024 Jan 26.
10
Multiphysical graph neural network (MP-GNN) for COVID-19 drug design.
Brief Bioinform. 2022 Jul 18;23(4). doi: 10.1093/bib/bbac231.

本文引用的文献

1
A comparative study of GNN and MLP based machine learning for the diagnosis of Alzheimer's Disease involving data synthesis.
Neural Netw. 2024 Jan;169:442-452. doi: 10.1016/j.neunet.2023.10.040. Epub 2023 Oct 26.
4
2023 Alzheimer's disease facts and figures.
Alzheimers Dement. 2023 Apr;19(4):1598-1695. doi: 10.1002/alz.13016. Epub 2023 Mar 14.
7
Improved Alzheimer's Disease Detection by MRI Using Multimodal Machine Learning Algorithms.
Diagnostics (Basel). 2021 Nov 13;11(11):2103. doi: 10.3390/diagnostics11112103.
8
Resting Heartbeat Complexity Predicts All-Cause and Cardiorespiratory Mortality in Middle- to Older-Aged Adults From the UK Biobank.
J Am Heart Assoc. 2021 Feb 2;10(3):e018483. doi: 10.1161/JAHA.120.018483. Epub 2021 Jan 19.
10
Federated Learning for Healthcare Informatics.
J Healthc Inform Res. 2021;5(1):1-19. doi: 10.1007/s41666-020-00082-4. Epub 2020 Nov 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验