Department of Biomedical Engineering and Biotechnology, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
Healthcare Engineering Innovation Group (HEIG), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
Sci Rep. 2024 Sep 10;14(1):21061. doi: 10.1038/s41598-024-72321-2.
Alzheimer's disease (AD), the most prevalent form of dementia, requires early prediction for timely intervention. Current deep learning approaches, particularly those using traditional neural networks, face challenges such as handling high-dimensional data, interpreting complex relationships, and managing data bias. To address these limitations, we propose a framework utilizing graph neural networks (GNNs), which excel in modeling relationships within graph-structured data. Our study employs GNNs on data from the Alzheimer's Disease Neuroimaging Initiative for binary and multi-class classification across the three stages of AD: cognitively normal (CN), mild cognitive impairment (MCI), and Alzheimer's disease (AD). By incorporating comorbidity data derived from electronic health records, we achieved the most effective multi-classification results. Notably, the GNN model (Chebyshev Convolutional Neural Networks) demonstrated superior performance with a 0.98 accuracy in multi-class classification and 0.99, 0.93, and 0.94 in the AD/CN, AD/MCI, and CN/MCI binary tasks, respectively. The model's robustness was further validated using the Australian Imaging, Biomarker & Lifestyle dataset as an external validation set. This work contributes to the field by offering a robust, accurate, and cost-effective method for early AD prediction (CN vs. MCI), addressing key challenges in existing deep learning approaches.
阿尔茨海默病(AD)是最常见的痴呆症形式,需要早期预测以便及时干预。目前的深度学习方法,特别是那些使用传统神经网络的方法,面临着处理高维数据、解释复杂关系和管理数据偏差等挑战。为了解决这些限制,我们提出了一个利用图神经网络(GNN)的框架,GNN 在处理图结构数据中的关系方面表现出色。我们的研究在来自阿尔茨海默病神经影像学倡议的数据上使用了 GNN 进行二分类和三分类(AD、MCI 和 CN),以实现 AD 的三个阶段的分类:认知正常(CN)、轻度认知障碍(MCI)和阿尔茨海默病(AD)。通过合并来自电子健康记录的合并症数据,我们实现了最有效的多分类结果。值得注意的是,GNN 模型(切比雪夫卷积神经网络)在多分类任务中表现出了优异的性能,准确率为 0.98,在 AD/CN、AD/MCI 和 CN/MCI 二进制任务中的准确率分别为 0.99、0.93 和 0.94。该模型的稳健性还通过使用澳大利亚成像、生物标志物和生活方式数据集作为外部验证集进行了验证。这项工作通过提供一种强大、准确且具有成本效益的早期 AD 预测方法(CN 与 MCI),为解决现有深度学习方法中的关键挑战做出了贡献。