Hiroko H. Dodge, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA,
J Prev Alzheimers Dis. 2023;10(2):301-313. doi: 10.14283/jpad.2023.10.
Clinical trials are increasingly focused on pre-manifest and early Alzheimer's disease (AD). Accurately predicting clinical progressions from normal to MCI or from MCI to dementia/AD versus non-progression is challenging. Accurate identification of symptomatic progressors is important to avoid unnecessary treatment and improve trial efficiency. Due to large inter-individual variability, biomarker positivity and comorbidity information are often insufficient to identify those destined to have symptomatic progressions. Using only clinical variables, we aimed to predict clinical progressions, estimating probabilities of progressions with a small set of variables selected by machine learning approaches. This work updates our previous work that was applied to the National Alzheimer's Coordinating Center (NACC) Uniform Data Set Version 2 (V2), by using the most recent version (V3) with additional analyses. We generated a user-friendly conversion probability calculator which can be used for effectively pre-screening trial participants.
临床试验越来越关注于明显前和早期阿尔茨海默病(AD)。准确预测从正常到轻度认知障碍(MCI)或从 MCI 到痴呆/AD 的临床进展,以及不进展的情况具有挑战性。准确识别有症状的进展者对于避免不必要的治疗和提高试验效率很重要。由于个体间的变异性很大,生物标志物阳性和合并症信息通常不足以识别那些注定会有症状进展的患者。我们仅使用临床变量,旨在通过机器学习方法选择的一小部分变量来预测临床进展,估计进展的概率。这项工作更新了我们之前的工作,该工作应用于国家阿尔茨海默病协调中心(NACC)统一数据集中的版本 2(V2),通过使用最新版本(V3)进行额外分析。我们生成了一个用户友好的转换概率计算器,可用于有效地对试验参与者进行预筛选。