Wang Zhepeng, Bao Runxue, Wu Yawen, Liu Guodong, Yang Lei, Zhan Liang, Zheng Feng, Jiang Weiwen, Zhang Yanfu
George Mason University, Fairfax, VA 22032, USA.
GE Healthcare, Bellevue, WA 98004, USA.
Med Image Comput Comput Assist Interv. 2024 Oct;15002:378-388. doi: 10.1007/978-3-031-72069-7_36. Epub 2024 Oct 4.
Graph neural networks (GNNs) are proficient machine learning models in handling irregularly structured data. Nevertheless, their generic formulation falls short when applied to the analysis of brain connectomes in Alzheimer's Disease (AD), necessitating the incorporation of domain-specific knowledge to achieve optimal model performance. The integration of AD-related expertise into GNNs presents a significant challenge. Current methodologies reliant on manual design often demand substantial expertise from external domain specialists to guide the development of novel models, thereby consuming considerable time and resources. To mitigate the need for manual curation, this paper introduces a novel self-guided knowledge-infused multimodal GNN to autonomously integrate domain knowledge into the model development process. We propose to conceptualize existing domain knowledge as natural language, and devise a specialized multimodal GNN framework tailored to leverage this uncurated knowledge to direct the learning of the GNN submodule, thereby enhancing its efficacy and improving prediction interpretability. To assess the effectiveness of our framework, we compile a comprehensive literature dataset comprising recent peer-reviewed publications on AD. By integrating this literature dataset with several real-world AD datasets, our experimental results illustrate the effectiveness of the proposed method in extracting curated knowledge and offering explanations on graphs for domain-specific applications. Furthermore, our approach successfully utilizes the extracted information to enhance the performance of the GNN.
图神经网络(GNNs)是处理不规则结构数据的高效机器学习模型。然而,当将其通用公式应用于阿尔茨海默病(AD)脑连接组分析时存在不足,因此需要纳入特定领域知识以实现最佳模型性能。将与AD相关的专业知识整合到GNNs中面临重大挑战。当前依赖手动设计的方法通常需要外部领域专家的大量专业知识来指导新模型的开发,从而消耗大量时间和资源。为减少对手动整理的需求,本文引入了一种新型的自引导知识注入多模态GNN,以将领域知识自动整合到模型开发过程中。我们建议将现有领域知识概念化为自然语言,并设计一个专门的多模态GNN框架,以利用这些未经整理的知识来指导GNN子模块的学习,从而提高其有效性并改善预测的可解释性。为评估我们框架的有效性,我们编制了一个综合文献数据集,其中包括最近关于AD的同行评审出版物。通过将这个文献数据集与几个真实世界的AD数据集相结合,我们的实验结果说明了所提出方法在提取整理后的知识以及为特定领域应用的图提供解释方面的有效性。此外,我们的方法成功利用提取的信息提高了GNN的性能。