Department of Chemistry, University of California, Riverside, California 92521, United States.
Department of Bioengineering, University of California, Riverside, California 92521, United States.
Nano Lett. 2024 Apr 17;24(15):4588-4594. doi: 10.1021/acs.nanolett.4c00721. Epub 2024 Apr 8.
Effective thawing of cryopreserved samples requires rapid and uniform heating. This is achievable through nanowarming, an approach that heats magnetic nanoparticles by using alternating magnetic fields. Here we demonstrate the synthesis and surface modification of magnetic nanoclusters for efficient nanowarming. Magnetite (FeO) nanoclusters with an optimal diameter of 58 nm exhibit a high specific absorption rate of 1499 W/g Fe under an alternating magnetic field at 43 kA/m and 413 kHz, more than twice that of commercial iron oxide cores used in prior nanowarming studies. Surface modification with a permeable resorcinol-formaldehyde resin (RFR) polymer layer significantly enhances their colloidal stability in complex cryoprotective solutions, while maintaining their excellent heating capacity. The FeO@RFR nanoparticles achieved a high average heating rate of 175 °C/min in cryopreserved samples at a concentration of 10 mg Fe/mL and were successfully applied in nanowarming porcine iliac arteries, highlighting their potential for enhancing the efficacy of cryopreservation.
冷冻保存样本的有效解冻需要快速且均匀的加热。这可以通过纳米加热来实现,这种方法通过使用交变磁场来加热磁性纳米粒子。在这里,我们展示了用于高效纳米加热的磁性纳米团簇的合成和表面修饰。具有最佳直径为 58nm 的磁铁矿 (FeO) 纳米团簇在 43kA/m 和 413kHz 的交变磁场下表现出 1499W/gFe 的高比吸收率,是先前纳米加热研究中使用的商业氧化铁核的两倍多。用可渗透的间苯二酚-甲醛树脂 (RFR) 聚合物层进行表面修饰,显著提高了它们在复杂的抗冻保护溶液中的胶体稳定性,同时保持了它们优异的加热能力。FeO@RFR 纳米粒子在浓度为 10mgFe/mL 的冷冻保存样品中实现了 175°C/min 的高平均加热速率,并成功应用于纳米加热猪髂动脉,突出了它们在增强冷冻保存效果方面的潜力。