Suppr超能文献

基于胸部 X 光片的自动肺结核严重程度评估。

Automated Pulmonary Tuberculosis Severity Assessment on Chest X-rays.

机构信息

Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, Bethesda, 20892, MD, USA.

Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, 20894, MD, USA.

出版信息

J Imaging Inform Med. 2024 Oct;37(5):2173-2185. doi: 10.1007/s10278-024-01052-7. Epub 2024 Apr 8.

Abstract

According to the 2022 World Health Organization's Global Tuberculosis (TB) report, an estimated 10.6 million people fell ill with TB, and 1.6 million died from the disease in 2021. In addition, 2021 saw a reversal of a decades-long trend of declining TB infections and deaths, with an estimated increase of 4.5% in the number of people who fell ill with TB compared to 2020, and an estimated yearly increase of 450,000 cases of drug resistant TB. Estimating the severity of pulmonary TB using frontal chest X-rays (CXR) can enable better resource allocation in resource constrained settings and monitoring of treatment response, enabling prompt treatment modifications if disease severity does not decrease over time. The Timika score is a clinically used TB severity score based on a CXR reading. This work proposes and evaluates three deep learning-based approaches for predicting the Timika score with varying levels of explainability. The first approach uses two deep learning-based models, one to explicitly detect lesion regions using YOLOV5n and another to predict the presence of cavitation using DenseNet121, which are then utilized in score calculation. The second approach uses a DenseNet121-based regression model to directly predict the affected lung percentage and another to predict cavitation presence using a DenseNet121-based classification model. Finally, the third approach directly predicts the Timika score using a DenseNet121-based regression model. The best performance is achieved by the second approach with a mean absolute error of 13-14% and a Pearson correlation of 0.7-0.84 using three held-out datasets for evaluating generalization.

摘要

根据 2022 年世界卫生组织全球结核病(TB)报告,估计 2021 年有 1060 万人患结核病,160 万人死于该疾病。此外,2021 年结核病感染和死亡人数出现了数十年来下降趋势的逆转,与 2020 年相比,估计患结核病的人数增加了 4.5%,耐多药结核病的估计年病例数增加了 45 万例。使用正面胸部 X 光(CXR)估计肺结核的严重程度可以在资源有限的环境中更好地分配资源,并监测治疗反应,如果疾病严重程度没有随时间降低,则可以及时进行治疗调整。Timika 评分是一种基于 CXR 读数的临床使用的结核病严重程度评分。这项工作提出并评估了三种基于深度学习的方法,用于预测 Timika 评分,并具有不同程度的可解释性。第一种方法使用了两个基于深度学习的模型,一个用于使用 YOLOV5n 显式检测病变区域,另一个用于使用 DenseNet121 预测空洞的存在,然后用于计算评分。第二种方法使用基于 DenseNet121 的回归模型直接预测受影响的肺百分比,另一个使用基于 DenseNet121 的分类模型预测空洞的存在。最后,第三种方法直接使用基于 DenseNet121 的回归模型预测 Timika 评分。使用三个留作评估的数据集,第二种方法的性能最佳,平均绝对误差为 13-14%,皮尔逊相关系数为 0.7-0.84。

相似文献

1
Automated Pulmonary Tuberculosis Severity Assessment on Chest X-rays.基于胸部 X 光片的自动肺结核严重程度评估。
J Imaging Inform Med. 2024 Oct;37(5):2173-2185. doi: 10.1007/s10278-024-01052-7. Epub 2024 Apr 8.

本文引用的文献

8
Deep learning for chest X-ray analysis: A survey.深度学习在胸部 X 光分析中的应用:综述。
Med Image Anal. 2021 Aug;72:102125. doi: 10.1016/j.media.2021.102125. Epub 2021 Jun 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验