Suppr超能文献

人工智能驱动的血糖监测与控制系统:泵送模块。

Artificial intelligence powered glucose monitoring and controlling system: Pumping module.

作者信息

Medanki Sravani, Dommati Nikhil, Bodapati Hema Harshitha, Katru Venkata Naga Sai Kowsik, Moses Gollapalli, Komaraju Abhishek, Donepudi Nanda Sai, Yalamanchili Dhanya, Sateesh Jasti, Turimerla Pratap

机构信息

Department of Electronics and Communication Engineering, Velagapudi Ramakrishna Siddhartha Engineering College, Vijayawada 520007, Andhra Pradesh, India.

Department of General Medicine, Siddhartha Government Medical College, Vijayawada 520008, Andhra Pradesh, India.

出版信息

World J Exp Med. 2024 Mar 20;14(1):87916. doi: 10.5493/wjem.v14.i1.87916.

Abstract

BACKGROUND

Diabetes, a globally escalating health concern, necessitates innovative solutions for efficient detection and management. Blood glucose control is an essential aspect of managing diabetes and finding the most effective ways to control it. The latest findings suggest that a basal insulin administration rate and a single, high-concentration injection before a meal may not be sufficient to maintain healthy blood glucose levels. While the basal insulin rate treatment can stabilize blood glucose levels over the long term, it may not be enough to bring the levels below the post-meal limit after 60 min. The short-term impacts of meals can be greatly reduced by high-concentration injections, which can help stabilize blood glucose levels. Unfortunately, they cannot provide long-term stability to satisfy the post-meal or pre-meal restrictions. However, proportional-integral-derivative (PID) control with basal dose maintains the blood glucose levels within the range for a longer period.

AIM

To develop a closed-loop electronic system to pump required insulin into the patient's body automatically in synchronization with glucose sensor readings.

METHODS

The proposed system integrates a glucose sensor, decision unit, and pumping module to specifically address the pumping of insulin and enhance system effectiveness. Serving as the intelligence hub, the decision unit analyzes data from the glucose sensor to determine the optimal insulin dosage, guided by a pre-existing glucose and insulin level table. The artificial intelligence detection block processes this information, providing decision instructions to the pumping module. Equipped with communication antennas, the glucose sensor and micropump operate in a feedback loop, creating a closed-loop system that eliminates the need for manual intervention.

RESULTS

The incorporation of a PID controller to assess and regulate blood glucose and insulin levels in individuals with diabetes introduces a sophisticated and dynamic element to diabetes management. The simulation not only allows visualization of how the body responds to different inputs but also offers a valuable tool for predicting and testing the effects of various interventions over time. The PID controller's role in adjusting insulin dosage based on the discrepancy between desired setpoints and actual measurements showcases a proactive strategy for maintaining blood glucose levels within a healthy range. This dynamic feedback loop not only delays the onset of steady-state conditions but also effectively counteracts post-meal spikes in blood glucose.

CONCLUSION

The WiFi-controlled voltage controller and the PID controller simulation collectively underscore the ongoing efforts to enhance efficiency, safety, and personalized care within the realm of diabetes management. These technological advancements not only contribute to the optimization of insulin delivery systems but also have the potential to reshape our understanding of glucose and insulin dynamics, fostering a new era of precision medicine in the treatment of diabetes.

摘要

背景

糖尿病是一个在全球范围内日益严重的健康问题,需要创新的解决方案来实现高效检测和管理。血糖控制是糖尿病管理的一个重要方面,并且要找到最有效的控制方法。最新研究结果表明,基础胰岛素给药速率以及餐前单次高浓度注射可能不足以维持健康的血糖水平。虽然基础胰岛素速率治疗可以长期稳定血糖水平,但可能不足以使血糖水平在60分钟后降至餐后限制以下。高浓度注射可以大大降低进餐的短期影响,有助于稳定血糖水平。不幸的是,它们无法提供长期稳定性以满足餐后或餐前限制。然而,采用基础剂量的比例积分微分(PID)控制可使血糖水平在更长时间内保持在该范围内。

目的

开发一种闭环电子系统,使其与葡萄糖传感器读数同步自动将所需胰岛素泵入患者体内。

方法

所提出的系统集成了葡萄糖传感器、决策单元和泵送模块,专门用于解决胰岛素泵送问题并提高系统效率。作为智能枢纽,决策单元在预先存在的血糖和胰岛素水平表的指导下,分析来自葡萄糖传感器的数据以确定最佳胰岛素剂量。人工智能检测模块处理这些信息,向泵送模块提供决策指令。葡萄糖传感器和微型泵配备有通信天线,在反馈回路中运行,形成一个无需人工干预的闭环系统。

结果

在糖尿病患者中加入PID控制器以评估和调节血糖和胰岛素水平,为糖尿病管理引入了一个复杂且动态的元素。该模拟不仅可以可视化身体对不同输入的反应,还提供了一个有价值的工具,用于预测和测试各种干预措施随时间的效果。PID控制器根据期望设定值与实际测量值之间的差异调整胰岛素剂量的作用,展示了一种将血糖水平维持在健康范围内的积极策略。这种动态反馈回路不仅延迟了稳态条件的出现,还有效抵消了餐后血糖峰值。

结论

WiFi控制的电压控制器和PID控制器模拟共同强调了在糖尿病管理领域为提高效率、安全性和个性化护理所做的持续努力。这些技术进步不仅有助于优化胰岛素输送系统,还有可能重塑我们对葡萄糖和胰岛素动态的理解,开创糖尿病治疗精准医学的新时代。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9de/10999070/141cc8e903a3/87916-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验