Suppr超能文献

基于 EEG 数据的混合 1DCNN-机器学习方法的癫痫发作检测。

Epileptic Seizure Detection Using a Hybrid 1D CNN-Machine Learning Approach from EEG Data.

机构信息

Faculty of Computer Science and Engineering, G. I. K. Institute, Topi, Pakistan.

School of Computer Science, University of Birmingham, Birmingham, UK.

出版信息

J Healthc Eng. 2022 Nov 29;2022:9579422. doi: 10.1155/2022/9579422. eCollection 2022.

Abstract

Electroencephalography (EEG) is a widely used technique for the detection of epileptic seizures. It can be recorded in a noninvasive manner to present the electrical activity of the brain. The visual inspection of nonlinear and highly complex EEG signals is both costly and time-consuming. Therefore, an effective automatic detection system is needed to assist in the long-term evaluation and treatment of patients. Traditional approaches based on machine learning require feature extraction, while deep learning approaches are time-consuming and require more layers for effective feature learning and processing of complex EEG waveforms. Deep learning-based approaches also have weak generalization ability. This paper proposes a solution based on the combination of convolution neural networks (CNN) and machine learning classifiers. It preprocesses the EEG signal using the Butterworth filter and performs feature extraction using CNN. From the extracted set of features, the approach selects only the relevant features using mutual information-based estimators to reduce the curse of dimensionality and improve classification accuracy. The selected features are then passed as input to different machine learning classifiers. The suggested solution is evaluated on the University of Bonn dataset and CHB-MIT datasets. Our model effectively predicts 2, 3, 4, and 5 classes with accuracy of 100%, 99%, 94.6%, and 94%, respectively, for the Bonn dataset and 98% for CHB-MIT datasets.

摘要

脑电图 (EEG) 是一种广泛用于检测癫痫发作的技术。它可以以非侵入性的方式记录大脑的电活动。对非线性和高度复杂的 EEG 信号进行可视化检查既昂贵又耗时。因此,需要一个有效的自动检测系统来帮助对患者进行长期评估和治疗。基于机器学习的传统方法需要特征提取,而深度学习方法则耗时且需要更多的层来有效地学习特征和处理复杂的 EEG 波形。基于深度学习的方法也具有较弱的泛化能力。本文提出了一种基于卷积神经网络 (CNN) 和机器学习分类器相结合的解决方案。它使用巴特沃斯滤波器对 EEG 信号进行预处理,并使用 CNN 进行特征提取。从提取的特征集中,该方法使用基于互信息的估计器选择仅相关的特征,以减少维度灾难并提高分类准确性。然后将选择的特征作为输入传递给不同的机器学习分类器。所提出的解决方案在波恩数据集和 CHB-MIT 数据集上进行了评估。我们的模型对波恩数据集的 2、3、4 和 5 类有效预测,准确率分别为 100%、99%、94.6%和 94%,对 CHB-MIT 数据集的准确率为 98%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c64/9726261/be814cba3468/JHE2022-9579422.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验