Suppr超能文献

使用加权基因共表达网络分析和机器学习筛选脊髓损伤的生物标志物

Screening biomarkers for spinal cord injury using weighted gene co-expression network analysis and machine learning.

作者信息

Li Xiaolu, Yang Ye, Xu Senming, Gui Yuchang, Chen Jianmin, Xu Jianwen

机构信息

Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.

Department of Rehabilitation Medicine, Guilin People's Hospital, Guilin, Guangxi Zhuang Autonomous Region, China.

出版信息

Neural Regen Res. 2024 Dec 1;19(12):2723-2734. doi: 10.4103/1673-5374.391306. Epub 2023 Dec 21.

Abstract

JOURNAL/nrgr/04.03/01300535-202412000-00028/figure1/v/2024-04-08T165401Z/r/image-tiff Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal cord injury. They can greatly affect nerve regeneration and functional recovery. However, there is still limited understanding of the peripheral immune inflammatory response in spinal cord injury. In this study, we obtained microRNA expression profiles from the peripheral blood of patients with spinal cord injury using high-throughput sequencing. We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus (GEO) database (GSE151371). We identified 54 differentially expressed microRNAs and 1656 differentially expressed genes using bioinformatics approaches. Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways, such as neutrophil extracellular trap formation pathway, T cell receptor signaling pathway, and nuclear factor-κB signal pathway, were abnormally activated or inhibited in spinal cord injury patient samples. We applied an integrated strategy that combines weighted gene co-expression network analysis, LASSO logistic regression, and SVM-RFE algorithm and identified three biomarkers associated with spinal cord injury: ANO10, BST1, and ZFP36L2. We verified the expression levels and diagnostic performance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve. Quantitative polymerase chain reaction results showed that ANO10 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients. We also constructed a small RNA-mRNA interaction network using Cytoscape. Additionally, we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal cord injury patients using the CIBERSORT tool. The proportions of naïve B cells, plasma cells, monocytes, and neutrophils were increased while the proportions of memory B cells, CD8+ T cells, resting natural killer cells, resting dendritic cells, and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects, and ANO10, BST1 and ZFP26L2 were closely related to the proportion of certain immune cell types. The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal cord injury and suggest that ANO10, BST1, and ZFP36L2 are potential biomarkers for spinal cord injury. The study was registered in the Chinese Clinical Trial Registry (registration No. ChiCTR2200066985, December 12, 2022).

摘要

免疫变化和炎症反应已被确定为脊髓损伤病理过程中的核心事件。它们会极大地影响神经再生和功能恢复。然而,目前对脊髓损伤中外周免疫炎症反应的了解仍然有限。在本研究中,我们使用高通量测序技术从脊髓损伤患者的外周血中获取了微小RNA表达谱。我们还从基因表达综合数据库(GEO)(GSE151371)中获取了脊髓损伤患者的mRNA表达谱。我们使用生物信息学方法鉴定出54个差异表达的微小RNA和1656个差异表达的基因。功能富集分析表明,在脊髓损伤患者样本中,各种常见的免疫和炎症相关信号通路,如中性粒细胞胞外陷阱形成通路、T细胞受体信号通路和核因子κB信号通路,出现异常激活或抑制。我们应用了一种综合策略,该策略结合了加权基因共表达网络分析、LASSO逻辑回归和支持向量机-递归特征消除算法,并鉴定出与脊髓损伤相关的三个生物标志物:ANO10、BST1和ZFP36L2。我们通过受试者工作特征曲线验证了这三个基因在原始训练数据集和临床样本中的表达水平及诊断性能。定量聚合酶链反应结果显示,脊髓损伤患者外周血中ANO10和BST1的mRNA水平升高,而ZFP36L2的mRNA水平降低。我们还使用Cytoscape构建了一个小RNA-mRNA相互作用网络。此外,我们使用CIBERSORT工具评估了脊髓损伤患者外周血中22种免疫细胞的比例。与健康受试者相比,脊髓损伤患者中幼稚B细胞、浆细胞、单核细胞和中性粒细胞的比例增加而记忆B细胞、CD8 + T细胞、静息自然杀伤细胞、静息树突状细胞和嗜酸性粒细胞的比例显著降低,且ANO10、BST1和ZFP26L2与某些免疫细胞类型比例密切相关。本研究结果为脊髓损伤免疫炎症相关治疗策略制定提供了新方向,并提示ANO10、BST1和ZFP36L2是脊髓损伤潜在的生物标志物。该研究已在中国临床试验注册中心注册(注册号:ChiCTR2200066985,2022年12月12日) 。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3726/11168503/42922fabe39a/NRR-19-2723-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验