Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, P.O. Box 12200, FI-00076 AALTO, Espoo, Finland.
Hertie-Insitute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
Brain Topogr. 2024 Sep;37(5):659-683. doi: 10.1007/s10548-024-01044-4. Epub 2024 Apr 10.
Electroencephalogram (EEG) recorded as response to transcranial magnetic stimulation (TMS) can be highly informative of cortical reactivity and connectivity. Reliable EEG interpretation requires artifact removal as the TMS-evoked EEG can contain high-amplitude artifacts. Several methods have been proposed to uncover clean neuronal EEG responses. In practice, determining which method to select for different types of artifacts is often difficult. Here, we used a unified data cleaning framework based on beamforming to improve the algorithm selection and adaptation to the recorded signals. Beamforming properties are well understood, so they can be used to yield customized methods for EEG cleaning based on prior knowledge of the artifacts and the data. The beamforming implementations also cover, but are not limited to, the popular TMS-EEG cleaning methods: independent component analysis (ICA), signal-space projection (SSP), signal-space-projection-source-informed-reconstruction method (SSP-SIR), the source-estimate-utilizing noise-discarding algorithm (SOUND), data-driven Wiener filter (DDWiener), and the multiple-source approach. In addition to these established methods, beamforming provides a flexible way to derive novel artifact suppression algorithms by considering the properties of the recorded data. With simulated and measured TMS-EEG data, we show how to adapt the beamforming-based cleaning to different data and artifact types, namely TMS-evoked muscle artifacts, ocular artifacts, TMS-related peripheral responses, and channel noise. Importantly, beamforming implementations are fast to execute: We demonstrate how the SOUND algorithm becomes orders of magnitudes faster via beamforming. Overall, the beamforming-based spatial filtering framework can greatly enhance the selection, adaptability, and speed of EEG artifact removal.
脑电(EEG)记录作为经颅磁刺激(TMS)的反应,可以提供皮质反应性和连通性的丰富信息。可靠的 EEG 解释需要去除伪影,因为 TMS 诱发的 EEG 可能包含高振幅伪影。已经提出了几种方法来揭示干净的神经元 EEG 响应。在实践中,确定为不同类型的伪影选择哪种方法通常很困难。在这里,我们使用基于波束形成的统一数据清理框架来改进算法选择并适应记录的信号。波束形成的特性是众所周知的,因此可以根据伪影和数据的先验知识,用于生成基于定制的 EEG 清理方法。波束形成的实现也涵盖了,但不限于,流行的 TMS-EEG 清理方法:独立成分分析(ICA)、信号空间投影(SSP)、信号空间投影源信息重建方法(SSP-SIR)、源估计噪声消除算法(SOUND)、数据驱动 Wiener 滤波器(DDWiener)和多源方法。除了这些已建立的方法之外,波束形成还提供了一种灵活的方法,通过考虑记录数据的特性来推导新的伪影抑制算法。通过模拟和测量的 TMS-EEG 数据,我们展示了如何适应基于波束形成的清理不同的数据和伪影类型,即 TMS 诱发的肌肉伪影、眼动伪影、TMS 相关的外周反应和通道噪声。重要的是,波束形成的实现执行速度很快:我们通过波束形成证明了 SOUND 算法的速度可以提高几个数量级。总的来说,基于波束形成的空间滤波框架可以极大地增强 EEG 伪影去除的选择、适应性和速度。