Brain Image Analysis Unit, RIKEN Center for Brain Science, Wako-shi, Japan; Faculty of Computer Science, Universitas Indonesia, Depok, Indonesia.
Brain Image Analysis Unit, RIKEN Center for Brain Science, Wako-shi, Japan; Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland.
Comput Biol Med. 2024 May;174:108414. doi: 10.1016/j.compbiomed.2024.108414. Epub 2024 Apr 8.
In this study, we introduce "instance loss functions", a new family of loss functions designed to enhance the training of neural networks in the instance-level segmentation and detection of objects in biomedical image data, particularly those of varied numbers and sizes. Intended to be utilized conjointly with traditional loss functions, these proposed functions, prioritize object instances over pixel-by-pixel comparisons. The specific functions, the instance segmentation loss (L), the instance center loss (L), the false instance rate loss (L), and the instance proximity loss (L), serve distinct purposes. Specifically, L improves instance-wise segmentation quality, L enhances segmentation quality of small instances, L minimizes the rate of false and missed detections across varied instance sizes, and L improves detection quality by pulling predicted instances towards the ground truth instances. Through the task of segmenting white matter hyperintensities (WMH) in brain MRI, we benchmarked our proposed instance loss functions, both individually and in combination via an ensemble inference models approach, against traditional pixel-level loss functions. Data were sourced from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the WMH Segmentation Challenge datasets, which exhibit significant variation in WMH instance sizes. Empirical evaluations demonstrate that combining two instance-level loss functions through ensemble inference models outperforms models using other loss function on both the ADNI and WMH Segmentation Challenge datasets for the segmentation and detection of WMH instances. Further, applying these functions to the segmentation of nuclei in histopathology images demonstrated their effectiveness and generalizability beyond WMH, improving performance even in contexts with less severe instance imbalance.
在这项研究中,我们引入了“实例损失函数”,这是一类新的损失函数,旨在增强神经网络在生物医学图像数据中对象的实例级分割和检测中的训练,特别是那些数量和大小不同的对象。这些建议的函数旨在与传统的损失函数一起使用,优先考虑对象实例而不是逐像素比较。具体的函数包括实例分割损失(L)、实例中心损失(L)、假实例率损失(L)和实例接近度损失(L),它们分别具有不同的作用。具体来说,L 提高了实例级分割的质量,L 增强了小实例的分割质量,L 最小化了不同实例大小下的假阳性和漏检率,L 通过将预测实例拉向真实实例来提高检测质量。通过分割脑 MRI 中的脑白质高信号(WMH)任务,我们对我们提出的实例损失函数进行了基准测试,包括单独使用和通过集成推理模型方法组合使用,与传统的像素级损失函数进行了比较。数据来自阿尔茨海默病神经影像学倡议(ADNI)和 WMH 分割挑战数据集,这些数据集在 WMH 实例大小上存在显著差异。实证评估表明,在 ADNI 和 WMH 分割挑战数据集上,通过集成推理模型组合使用两个实例级损失函数的模型在分割和检测 WMH 实例方面优于使用其他损失函数的模型。此外,将这些函数应用于组织病理学图像中的细胞核分割证明了它们在 WMH 之外的有效性和通用性,即使在实例不平衡程度较低的情况下也能提高性能。