Suppr超能文献

从基因到生态系统:解读植物对砷胁迫的耐受机制

From genes to ecosystems: Decoding plant tolerance mechanisms to arsenic stress.

作者信息

Gracia-Rodriguez Celeste, Lopez-Ortiz Carlos, Flores-Iga Gerardo, Ibarra-Muñoz Lizbeth, Nimmakayala Padma, Reddy Umesh K, Balagurusamy Nagamani

机构信息

Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Mexico.

Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA.

出版信息

Heliyon. 2024 Apr 2;10(7):e29140. doi: 10.1016/j.heliyon.2024.e29140. eCollection 2024 Apr 15.

Abstract

Arsenic (As), a metalloid of considerable toxicity, has become increasingly bioavailable through anthropogenic activities, raising As contamination levels in groundwater and agricultural soils worldwide. This bioavailability has profound implications for plant biology and farming systems. As can detrimentally affect crop yield and pose risks of bioaccumulation and subsequent entry into the food chain. Upon exposure to As, plants initiate a multifaceted molecular response involving crucial signaling pathways, such as those mediated by calcium, mitogen-activated protein kinases, and various phytohormones (e.g., auxin, methyl jasmonate, cytokinin). These pathways, in turn, activate enzymes within the antioxidant system, which combat the reactive oxygen/nitrogen species (ROS and RNS) generated by As-induced stress. Plants exhibit a sophisticated genomic response to As, involving the upregulation of genes associated with uptake, chelation, and sequestration. Specific gene families, such as those coding for aquaglyceroporins and ABC transporters, are key in mediating As uptake and translocation within plant tissues. Moreover, we explore the gene regulatory networks that orchestrate the synthesis of phytochelatins and metallothioneins, which are crucial for As chelation and detoxification. Transcription factors, particularly those belonging to the MYB, NAC, and WRKY families, emerge as central regulators in activating As-responsive genes. On a post-translational level, we examine how ubiquitination pathways modulate the stability and function of proteins involved in As metabolism. By integrating omics findings, this review provides a comprehensive overview of the complex genomic landscape that defines plant responses to As. Knowledge gained from these genomic and epigenetic insights is pivotal for developing biotechnological strategies to enhance crop As tolerance.

摘要

砷(As)是一种具有相当毒性的类金属,通过人为活动其生物有效性日益增加,导致全球地下水和农业土壤中的砷污染水平上升。这种生物有效性对植物生物学和耕作系统具有深远影响。砷会对作物产量产生不利影响,并带来生物累积以及随后进入食物链的风险。植物在接触砷后会启动多方面的分子反应,涉及关键的信号通路,如由钙、丝裂原活化蛋白激酶和各种植物激素(如生长素、茉莉酸甲酯、细胞分裂素)介导的信号通路。这些通路进而激活抗氧化系统中的酶,以对抗砷诱导的胁迫所产生的活性氧/氮物种(ROS和RNS)。植物对砷表现出复杂的基因组反应,包括与吸收、螯合和隔离相关的基因上调。特定的基因家族,如编码水甘油通道蛋白和ABC转运蛋白的基因家族,在介导植物组织内砷的吸收和转运中起关键作用。此外,我们还探讨了协调植物螯合肽和金属硫蛋白合成的基因调控网络,这两种物质对于砷的螯合和解毒至关重要。转录因子,特别是属于MYB、NAC和WRKY家族的转录因子,成为激活砷响应基因的核心调节因子。在翻译后水平上,我们研究泛素化途径如何调节参与砷代谢的蛋白质的稳定性和功能。通过整合组学研究结果,本综述全面概述了定义植物对砷反应的复杂基因组格局。从这些基因组和表观遗传学见解中获得的知识对于开发提高作物耐砷性的生物技术策略至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5605/11004893/603f4f17345a/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验