Flores-Iga Gerardo, Lopez-Ortiz Carlos, Natarajan Purushothaman, Nimmakayala Padma, Reddy Umesh K, Balagurusamy Nagamani, Almeida Aldo
Laboratorio de Biorremediación, Facultad de Ciencias Biológicas Universidad Autónoma de Coahuila Torreón Coahuila México.
Gus R. Douglass Institute, Department of Biology West Virginia State University Institute West Virginia USA.
Plant Direct. 2025 Jun 1;9(6):e70074. doi: 10.1002/pld3.70074. eCollection 2025 Jun.
Cucurbits are cultivated worldwide in regions with high concentrations of arsenic (As), a hazardous metalloid, affecting produce quality and increasing the consumer exposure. Cucurbitacins are herbivore-deterrent secondary metabolites that contribute to the plant defense response. The impact of As exposure on phenotypic and metabolic traits has not been studied in members of the Cucurbitaceae family, such as squash ( L.). To comprehend the effects of As on the root system of , we assessed phenotype, cucurbitacin content, and transcriptome under low and high As concentrations. We report that at low dosages, cucurbitacins are decreased, while growth is not significantly affected. Conversely, high dosages impact growth and development altering root phenotype but cucurbitacin content is not significantly different from untreated plants. Furthermore, gene ontology enrichment on results of the RNA-seq analysis indicate that high dosages of As affect cellular regulatory processes, with genes related to glutathione metabolism being of the most upregulated. Additionally, an in-depth analysis of orthologs members of the heavy metal-associated (HMA)-domain superfamily and As-related transporters suggest a dosage-dependent participation of key members. WGCNA analysis reveals As-specific gene co-expression modules, indicating that low As levels induce adaptive responses in energy and allantoin metabolism, while higher levels trigger intensified oxidative stress responses, including upregulation of MYB transcription factors and heat shock proteins, which may support tolerance to the metalloid. Overall, As influences the root system physiology and metabolism in a concentration-specific manner, highlighting key defense systems and genes involved in response to As exposure.
葫芦科植物在世界范围内种植于砷(As)含量高的地区,砷是一种有害类金属,会影响农产品质量并增加消费者接触量。葫芦素是一种能够阻止食草动物的次生代谢产物,有助于植物的防御反应。尚未对葫芦科植物成员(如南瓜(西葫芦))进行过砷暴露对其表型和代谢特征影响的研究。为了了解砷对南瓜根系的影响,我们评估了低砷和高砷浓度下的表型、葫芦素含量和转录组。我们报告称,在低剂量下,葫芦素减少,而生长未受到显著影响。相反,高剂量会影响生长发育,改变根的表型,但葫芦素含量与未处理的植物相比无显著差异。此外,对RNA测序分析结果的基因本体富集表明,高剂量的砷会影响细胞调节过程,其中与谷胱甘肽代谢相关的基因上调最为明显。此外,对重金属相关(HMA)结构域超家族和砷相关转运蛋白的直系同源成员进行的深入分析表明,关键成员的参与具有剂量依赖性。加权基因共表达网络分析(WGCNA)揭示了与砷相关的基因共表达模块,表明低砷水平会诱导能量和尿囊素代谢中的适应性反应,而较高水平则会引发强化的氧化应激反应,包括MYB转录因子和热休克蛋白的上调,这可能有助于对该类金属的耐受性。总体而言,砷以浓度特异性方式影响根系生理和代谢,突出了参与砷暴露反应的关键防御系统和基因。