Suppr超能文献

COPD 阶段检测:利用吸气和呼气胸部 CT 图像的自动度量图神经网络。

COPD stage detection: leveraging the auto-metric graph neural network with inspiratory and expiratory chest CT images.

机构信息

College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China.

College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China.

出版信息

Med Biol Eng Comput. 2024 Jun;62(6):1733-1749. doi: 10.1007/s11517-024-03016-z. Epub 2024 Feb 16.

Abstract

Chronic obstructive pulmonary disease (COPD) is a common lung disease that can lead to restricted airflow and respiratory problems, causing a significant health, economic, and social burden. Detecting the COPD stage can provide a timely warning for prompt intervention in COPD patients. However, existing methods based on inspiratory (IN) and expiratory (EX) chest CT images are not sufficiently accurate and efficient in COPD stage detection. The lung region images are autonomously segmented from IN and EX chest CT images to extract the lung radiomics and 3D CNN features. Furthermore, a strategy for concatenating and selecting features was employed in COPD stage detection based on radiomics and 3D CNN features. Finally, we combine all the radiomics, 3D CNN features, and factor risks (age, gender, and smoking history) to detect the COPD stage based on the Auto-Metric Graph Neural Network (AMGNN). The AMGNN with radiomics and 3D CNN features achieves the best performance at 89.7 of accuracy, 90.9 of precision, 89.5 of F1-score, and 95.8 of AUC compared to six classic machine learning (ML) classifiers. Our proposed approach demonstrates high accuracy in detecting the stage of COPD using both IN and EX chest CT images. This method can potentially establish an efficient diagnostic tool for patients with COPD. Additionally, we have identified radiomics and 3D CNN as more appropriate biomarkers than Parametric Response Mapping (PRM). Moreover, our findings indicate that expiration yields better results than inspiration in detecting the stage of COPD.

摘要

慢性阻塞性肺疾病(COPD)是一种常见的肺部疾病,可导致气流受限和呼吸问题,给健康、经济和社会带来重大负担。检测 COPD 阶段可以为 COPD 患者的及时干预提供预警。然而,现有的基于吸气(IN)和呼气(EX)胸部 CT 图像的方法在 COPD 阶段检测中的准确性和效率都不够高。从 IN 和 EX 胸部 CT 图像中自动分割肺区图像,以提取肺放射组学和 3D CNN 特征。此外,还采用了基于放射组学和 3D CNN 特征的特征拼接和选择策略来进行 COPD 阶段检测。最后,我们结合所有的放射组学、3D CNN 特征和风险因素(年龄、性别和吸烟史),基于自动度量图神经网络(AMGNN)来检测 COPD 阶段。与 6 种经典机器学习(ML)分类器相比,基于放射组学和 3D CNN 特征的 AMGNN 在准确性、精度、F1 得分和 AUC 方面的表现最佳,分别为 89.7%、90.9%、89.5%和 95.8%。我们的方法在使用 IN 和 EX 胸部 CT 图像检测 COPD 阶段方面具有很高的准确性。这种方法有可能为 COPD 患者建立一个有效的诊断工具。此外,我们还发现放射组学和 3D CNN 比参数反应映射(PRM)更适合作为生物标志物。此外,我们的研究结果表明,在检测 COPD 阶段时,呼气比吸气效果更好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验