Suppr超能文献

基于卷积神经网络的胸部X光图像动态肺野三阶段配准流程

Three-stage registration pipeline for dynamic lung field of chest X-ray images based on convolutional neural networks.

作者信息

Yang Yingjian, Zheng Jie, Guo Peng, Gao Qi, Guo Yingwei, Chen Ziran, Liu Chengcheng, Wu Tianqi, Ouyang Zhanglei, Chen Huai, Kang Yan

机构信息

Department of Radiological Research and Development, Shenzhen Lanmage Medical Technology Co., Ltd., Shenzhen, Guangdong, China.

Neusoft Medical System Co., Ltd., Shenyang, Liaoning, China.

出版信息

Front Artif Intell. 2025 Mar 12;8:1466643. doi: 10.3389/frai.2025.1466643. eCollection 2025.

Abstract

BACKGROUND

The anatomically constrained registration network (AC-RegNet), which yields anatomically plausible results, has emerged as the state-of-the-art registration architecture for chest X-ray (CXR) images. Nevertheless, accurate lung field registration results may be more favored and exciting than the registration results of the entire CXR images and hold promise for dynamic lung field analysis in clinical practice.

OBJECTIVE

Based on the above, a registration model of the dynamic lung field of CXR images based on AC-RegNet and static CXR images is urgently developed to register these dynamic lung fields for clinical quantitative analysis.

METHODS

This paper proposes a fully automatic three-stage registration pipeline for the dynamic lung field of CXR images. First, the dynamic lung field mask images are generated from a pre-trained standard lung field segmentation model with the dynamic CXR images. Then, a lung field abstraction model is designed to generate the dynamic lung field images based on the dynamic lung field mask images and their corresponding CXR images. Finally, we propose a three-step registration training method to train the AC-RegNet, obtaining the registration network of the dynamic lung field images (AC-RegNet_V3).

RESULTS

The proposed AC-RegNet_V3 with the four basic segmentation networks achieve the mean dice similarity coefficient (DSC) of 0.991, 0.993, 0.993, and 0.993, mean Hausdorff distance (HD) of 12.512, 12.813, 12.449, and 13.661, mean average symmetric surface distance (ASSD) of 0.654, 0.550, 0.572, and 0.564, and mean squared distance (MSD) of 559.098, 577.797, 548.189, and 559.652, respectively. Besides, compared to the dynamic CXR images, the mean DSC of these four basic segmentation networks with AC-RegNet has been significantly improved by 7.2, 7.4, 7.4, and 7.4% (-value < 0.0001). Meanwhile, the mean HD has been significantly improved by 8.994, 8.693, 9.057, and 7.845 (-value < 0.0001). Similarly, the mean ASSD has significantly improved by 4.576, 4.680, 4.658, and 4.658 (-value < 0.0001). Last, the mean MSD has significantly improved by 508.936, 519.776, 517.904, and 520.626 (-value < 0.0001).

CONCLUSION

Our proposed three-stage registration pipeline has demonstrated its effectiveness in dynamic lung field registration. Therefore, it could become a powerful tool for dynamic lung field analysis in clinical practice, such as pulmonary airflow detection and air trapping location.

摘要

背景

解剖约束配准网络(AC-RegNet)能产生符合解剖学原理的结果,已成为胸部X光(CXR)图像的最先进配准架构。然而,准确的肺野配准结果可能比整个CXR图像的配准结果更受青睐且令人兴奋,并且在临床实践中对动态肺野分析具有前景。

目的

基于上述情况,迫切需要开发一种基于AC-RegNet和静态CXR图像的CXR图像动态肺野配准模型,以对这些动态肺野进行配准用于临床定量分析。

方法

本文提出了一种针对CXR图像动态肺野的全自动三阶段配准流程。首先,利用动态CXR图像从预训练的标准肺野分割模型生成动态肺野掩码图像。然后,设计一个肺野抽象模型,基于动态肺野掩码图像及其对应的CXR图像生成动态肺野图像。最后,我们提出一种三步配准训练方法来训练AC-RegNet,得到动态肺野图像的配准网络(AC-RegNet_V3)。

结果

所提出的带有四个基本分割网络的AC-RegNet_V3,其平均骰子相似系数(DSC)分别为0.991、0.993、0.993和0.993,平均豪斯多夫距离(HD)分别为12.512、12.813、12.449和13.661,平均对称表面距离(ASSD)分别为0.654、0.550、0.572和0.564,平均平方距离(MSD)分别为559.098、577.797、548.189和559.652。此外,与动态CXR图像相比,这四个基本分割网络与AC-RegNet的平均DSC显著提高了7.2%、7.4%、7.4%和7.4%(p值<0.0001)。同时,平均HD显著提高了8.994、8.693、9.057和7.845(p值<0.0001)。同样,平均ASSD显著提高了4.576、4.680、4.658和4.658(p值<0.0001)。最后,平均MSD显著提高了508.936、519.776、517.904和520.626(p值<0.0001)。

结论

我们提出的三阶段配准流程在动态肺野配准中已证明其有效性。因此,它可以成为临床实践中动态肺野分析的有力工具,如肺气流检测和空气潴留定位。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94d2/11936902/d4678d5c3a77/frai-08-1466643-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验