Suppr超能文献

机器学习结合 CT 表现和临床参数可提高对胸腹部创伤患者住院时间和 ICU 入住的预测。

Machine learning combining CT findings and clinical parameters improves prediction of length of stay and ICU admission in torso trauma.

机构信息

Department of Radiology, Boston Medical Center, Boston University School of Medicine, 820 Harrison Ave, FGH Building, 4th Floor, Boston, MA, 02114, USA.

Department of Electrical and Computer Engineering, Boston University College of Engineering, Boston, MA, USA.

出版信息

Eur Radiol. 2021 Jul;31(7):5434-5441. doi: 10.1007/s00330-020-07534-w. Epub 2021 Jan 21.

Abstract

OBJECTIVE

To develop machine learning (ML) models capable of predicting ICU admission and extended length of stay (LOS) after torso (chest, abdomen, or pelvis) trauma, by using clinical and/or imaging data.

MATERIALS AND METHODS

This was a retrospective study of 840 adult patients admitted to a level 1 trauma center after injury to the torso over the course of 1 year. Clinical parameters included age, sex, vital signs, clinical scores, and laboratory values. Imaging data consisted of any injury present on CT. The two outcomes of interest were ICU admission and extended LOS, defined as more than the median LOS in the dataset. We developed and tested artificial neural network (ANN) and support vector machine (SVM) models, and predictive performance was evaluated by area under the receiver operating characteristic (ROC) curve (AUC).

RESULTS

The AUCs of SVM and ANN models to predict ICU admission were up to 0.87 ± 0.03 and 0.78 ± 0.02, respectively. The AUCs of SVM and ANN models to predict extended LOS were up to 0.80 ± 0.04 and 0.81 ± 0.05, respectively. Predictions based on imaging alone or imaging with clinical parameters were consistently more accurate than those based solely on clinical parameters.

CONCLUSIONS

The best performing models incorporated imaging findings and outperformed those with clinical findings alone. ML models have the potential to help predict outcomes in trauma by integrating clinical and imaging findings, although further research may be needed to optimize their performance.

KEY POINTS

• Artificial neural network and support vector machine-based models were used to predict the intensive care unit admission and extended length of stay after trauma to the torso. • Our input data consisted of clinical parameters and CT imaging findings derived from radiology reports, and we found that combining the two significantly enhanced the prediction of both outcomes with either model. • The highest accuracy (83%) and highest area under the receiver operating characteristic curve (0.87) were obtained for artificial neural networks and support vector machines, respectively, by combining clinical and imaging features in the prediction of intensive care unit admission.

摘要

目的

通过使用临床和/或影像学数据,开发能够预测胸(胸、腹或骨盆)部创伤后入住 ICU 和延长 LOS 的机器学习 (ML) 模型。

材料和方法

这是一项回顾性研究,纳入了在 1 年内因躯干损伤而入住 1 级创伤中心的 840 名成年患者。临床参数包括年龄、性别、生命体征、临床评分和实验室值。影像学数据包括 CT 上显示的任何损伤。两个感兴趣的结果是 ICU 入院和延长 LOS,定义为超过数据集的中位数 LOS。我们开发并测试了人工神经网络 (ANN) 和支持向量机 (SVM) 模型,并通过接受者操作特征 (ROC) 曲线下的面积 (AUC) 评估预测性能。

结果

SVM 和 ANN 模型预测 ICU 入院的 AUC 最高可达 0.87 ± 0.03 和 0.78 ± 0.02。SVM 和 ANN 模型预测延长 LOS 的 AUC 最高可达 0.80 ± 0.04 和 0.81 ± 0.05。仅基于影像学或影像学与临床参数的预测始终比仅基于临床参数的预测更准确。

结论

表现最好的模型结合了影像学发现,优于仅基于临床发现的模型。ML 模型有可能通过整合临床和影像学发现来帮助预测创伤后的结果,尽管可能需要进一步研究来优化其性能。

关键点

  • 基于人工神经网络和支持向量机的模型用于预测胸外伤后入住 ICU 和延长 LOS。

  • 我们的输入数据包括来自放射学报告的临床参数和 CT 影像学发现,我们发现,无论是哪种模型,将这两者结合起来,都能显著提高对这两种结果的预测准确性。

  • 在预测 ICU 入住时,ANN 和 SVM 分别获得了最高的准确性(83%)和最高的 ROC 曲线下面积(0.87),这是通过将临床和影像学特征相结合得到的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验