Suppr超能文献

二维区域、三维区域和瘤周区域的放射组学揭示非小细胞肺癌的肿瘤异质性:一项多中心研究

Radiomics under 2D regions, 3D regions, and peritumoral regions reveal tumor heterogeneity in non-small cell lung cancer: a multicenter study.

作者信息

Zhang Xingping, Zhang Guijuan, Qiu Xingting, Yin Jiao, Tan Wenjun, Yin Xiaoxia, Yang Hong, Liao Liefa, Wang Hua, Zhang Yanchun

机构信息

Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, 510006, China.

Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC, 3011, Australia.

出版信息

Radiol Med. 2023 Sep;128(9):1079-1092. doi: 10.1007/s11547-023-01676-9. Epub 2023 Jul 24.

Abstract

PURPOSE

Lung cancer has significant genetic and phenotypic heterogeneity, leading to poor prognosis. Radiomic features have emerged as promising predictors of the tumor phenotype. However, the role of underlying information surrounding the cancer remains unclear.

MATERIALS AND METHODS

We conducted a retrospective study of 508 patients with NSCLC from three institutions. Radiomics models were built using features from six tumor regions and seven classifiers to predict three prognostically significant tumor phenotypes. The models were evaluated and interpreted by the mean area under the receiver operating characteristic curve (AUC) under nested cross-validation and Shapley values. The best-performing predictive models corresponding to six tumor regions and three tumor phenotypes were identified for further comparative analysis. In addition, we designed five experiments with different voxel spacing to assess the sensitivity of the experimental results to the spatial resolution of the voxels.

RESULTS

Our results demonstrated that models based on 2D, 3D, and peritumoral region features yielded mean AUCs and 95% confidence intervals of 0.759 and [0.747-0.771] for lymphovascular invasion, 0.889 and [0.882-0.896] for pleural invasion, and 0.839 and [0.829-0.849] for T-staging in the testing cohort, which was significantly higher than all other models. Similar results were obtained for the model combining the three regional features at five voxel spacings.

CONCLUSION

Our study revealed the predictive role of the developed methods with multi-regional features for the preoperative assessment of prognostic factors in NSCLC. The analysis of different voxel spacing and model interpretability strengthens the experimental findings and contributes to understanding the biological significance of the radiological phenotype.

摘要

目的

肺癌具有显著的基因和表型异质性,导致预后不良。影像组学特征已成为肿瘤表型的有前景的预测指标。然而,癌症周围潜在信息的作用仍不清楚。

材料与方法

我们对来自三个机构的508例非小细胞肺癌患者进行了回顾性研究。使用来自六个肿瘤区域的特征和七个分类器构建影像组学模型,以预测三种具有预后意义的肿瘤表型。通过嵌套交叉验证下的受试者操作特征曲线(AUC)均值和Shapley值对模型进行评估和解释。确定了与六个肿瘤区域和三种肿瘤表型相对应的性能最佳的预测模型,以进行进一步的比较分析。此外,我们设计了五个具有不同体素间距的实验,以评估实验结果对体素空间分辨率的敏感性。

结果

我们的结果表明,基于二维、三维和瘤周区域特征的模型在测试队列中,对于血管侵犯的平均AUC和95%置信区间为0.759和[0.747 - 0.771],对于胸膜侵犯为0.889和[0.882 - 0.896],对于T分期为0.839和[0.829 - 0.849],显著高于所有其他模型。在五个体素间距下,结合三种区域特征的模型也得到了类似结果。

结论

我们的研究揭示了所开发的具有多区域特征的方法在非小细胞肺癌预后因素术前评估中的预测作用。对不同体素间距的分析和模型可解释性加强了实验结果,并有助于理解放射学表型的生物学意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验