College of Life Science, Capital Normal University, Beijing, 100048, China.
Beijing Chaoyang Foreign Language School, Beijing, 100012, China.
Biotechnol Lett. 2024 Aug;46(4):531-543. doi: 10.1007/s10529-024-03485-0. Epub 2024 Apr 12.
Biofuel production from lignocellulose feedstocks is sustainable and environmentally friendly. However, the lignocellulosic pretreatment could produce fermentation inhibitors causing multiple stresses and low yield. Therefore, the engineering construction of highly resistant microorganisms is greatly significant. In this study, a composite functional chimeric cellulosome equipped with laccase, versatile peroxidase, and lytic polysaccharide monooxygenase was riveted on the surface of Saccharomyces cerevisiae to construct a novel yeast strain YI/LVP for synergistic lignin degradation and cellulosic ethanol production. The assembly of cellulosome was assayed by immunofluorescence microscopy and flow cytometry. During the whole process of fermentation, the maximum ethanol concentration and cellulose conversion of engineering strain YI/LVP reached 8.68 g/L and 83.41%, respectively. The results proved the availability of artificial chimeric cellulosome containing lignin-degradation enzymes for cellulosic ethanol production. The purpose of the study was to improve the inhibitor tolerance and fermentation performance of S. cerevisiae through the construction and optimization of a synergistic lignin-degrading enzyme system based on cellulosome.
从木质纤维素原料生产生物燃料具有可持续性和环境友好性。然而,木质纤维素的预处理会产生发酵抑制剂,从而导致多种压力和低产量。因此,构建具有高度抗性的微生物工程具有重要意义。在本研究中,将带有漆酶、多功能过氧化物酶和溶菌多糖单加氧酶的复合功能细胞外小体组装到酿酒酵母表面,构建了一种新型酵母菌株 YI/LVP,用于协同木质素降解和纤维素乙醇生产。通过免疫荧光显微镜和流式细胞术检测细胞外小体的组装。在整个发酵过程中,工程菌株 YI/LVP 的最大乙醇浓度和纤维素转化率分别达到 8.68 g/L 和 83.41%。结果证明了含有木质素降解酶的人工嵌合细胞外小体用于纤维素乙醇生产的有效性。本研究的目的是通过构建和优化基于细胞外小体的协同木质素降解酶系统,提高酿酒酵母的抑制剂耐受性和发酵性能。