Suppr超能文献

基于多尺度注意力引导网络的 COVID-19 诊断用 chest X-ray 图像分析。

Multiscale Attention Guided Network for COVID-19 Diagnosis Using Chest X-Ray Images.

出版信息

IEEE J Biomed Health Inform. 2021 May;25(5):1336-1346. doi: 10.1109/JBHI.2021.3058293. Epub 2021 May 11.

Abstract

Coronavirus disease 2019 (COVID-19) is one of the most destructive pandemic after millennium, forcing the world to tackle a health crisis. Automated lung infections classification using chest X-ray (CXR) images could strengthen diagnostic capability when handling COVID-19. However, classifying COVID-19 from pneumonia cases using CXR image is a difficult task because of shared spatial characteristics, high feature variation and contrast diversity between cases. Moreover, massive data collection is impractical for a newly emerged disease, which limited the performance of data thirsty deep learning models. To address these challenges, Multiscale Attention Guided deep network with Soft Distance regularization (MAG-SD) is proposed to automatically classify COVID-19 from pneumonia CXR images. In MAG-SD, MA-Net is used to produce prediction vector and attention from multiscale feature maps. To improve the robustness of trained model and relieve the shortage of training data, attention guided augmentations along with a soft distance regularization are posed, which aims at generating meaningful augmentations and reduce noise. Our multiscale attention model achieves better classification performance on our pneumonia CXR image dataset. Plentiful experiments are proposed for MAG-SD which demonstrates its unique advantage in pneumonia classification over cutting-edge models. The code is available at https://github.com/JasonLeeGHub/MAG-SD.

摘要

2019 年冠状病毒病(COVID-19)是千年以来最具破坏性的大流行病之一,迫使世界应对健康危机。使用胸部 X 光(CXR)图像对肺部感染进行自动分类可以在处理 COVID-19 时增强诊断能力。然而,由于病例之间存在共享的空间特征、高特征变化和对比度差异,因此使用 CXR 图像对 COVID-19 与肺炎进行分类是一项艰巨的任务。此外,对于新出现的疾病来说,大规模数据收集是不切实际的,这限制了数据饥渴型深度学习模型的性能。为了解决这些挑战,提出了一种带有软距离正则化的多尺度注意力引导深度网络(MAG-SD),用于自动从肺炎 CXR 图像中分类 COVID-19。在 MAG-SD 中,使用 MA-Net 从多尺度特征图中生成预测向量和注意力。为了提高训练模型的鲁棒性并缓解训练数据的不足,提出了注意力引导增强和软距离正则化,旨在生成有意义的增强并减少噪声。我们的多尺度注意力模型在我们的肺炎 CXR 图像数据集上实现了更好的分类性能。针对 MAG-SD 提出了大量实验,证明了其在肺炎分类方面相对于最先进模型的独特优势。代码可在 https://github.com/JasonLeeGHub/MAG-SD 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1e2/8545167/04049ae7465c/wang1-3058293.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验