Suppr超能文献

基于可穿戴传感器的人体活动识别中母小波函数选择的定量分析。

Quantitative Analysis of Mother Wavelet Function Selection for Wearable Sensors-Based Human Activity Recognition.

机构信息

Department of Systems and Computer Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada.

出版信息

Sensors (Basel). 2024 Mar 26;24(7):2119. doi: 10.3390/s24072119.

Abstract

Recent advancements in the Internet of Things (IoT) wearable devices such as wearable inertial sensors have increased the demand for precise human activity recognition (HAR) with minimal computational resources. The wavelet transform, which offers excellent time-frequency localization characteristics, is well suited for HAR recognition systems. Selecting a mother wavelet function in wavelet analysis is critical, as optimal selection improves the recognition performance. The activity time signals data have different periodic patterns that can discriminate activities from each other. Therefore, selecting a mother wavelet function that closely resembles the shape of the recognized activity's sensor (inertial) signals significantly impacts recognition performance. This study uses an optimal mother wavelet selection method that combines wavelet packet transform with the energy-to-Shannon-entropy ratio and two classification algorithms: decision tree (DT) and support vector machines (SVM). We examined six different mother wavelet families with different numbers of vanishing points. Our experiments were performed on eight publicly available ADL datasets: MHEALTH, WISDM Activity Prediction, HARTH, HARsense, DaLiAc, PAMAP2, REALDISP, and HAR70+. The analysis demonstrated in this paper can be used as a guideline for optimal mother wavelet selection for human activity recognition.

摘要

物联网(IoT)可穿戴设备(如可穿戴惯性传感器)的最新进展,增加了对最小计算资源下精确人体活动识别(HAR)的需求。小波变换具有出色的时频定位特性,非常适合 HAR 识别系统。在小波分析中选择母小波函数至关重要,因为最优选择可以提高识别性能。活动时间信号数据具有不同的周期模式,可以区分不同的活动。因此,选择与识别活动的传感器(惯性)信号形状相似的母小波函数,会显著影响识别性能。本研究采用了一种最优母小波选择方法,该方法将小波包变换与能量-香农熵比以及两种分类算法(决策树(DT)和支持向量机(SVM))相结合。我们研究了具有不同消失点数量的六种不同的母小波族。我们的实验是在八个公开可用的 ADL 数据集上进行的:MHEALTH、WISDM 活动预测、HARTH、HARsense、DaLiAc、PAMAP2、REALDISP 和 HAR70+。本文中的分析可以作为人体活动识别中最优母小波选择的指南。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e4c/11014000/143ec1b5395d/sensors-24-02119-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验