Suppr超能文献

基于包装的深度特征优化在医疗系统可穿戴传感器网络中的活动识别。

Wrapper-based deep feature optimization for activity recognition in the wearable sensor networks of healthcare systems.

机构信息

Department of Computer Science and Engineering, National Institute of Technology, Mahatma Gandhi Road, A-Zone, Durgapur, West Bengal, 713209, India.

Department of Information Technology, Jadavpur University, Jadavpur University Second Campus, Plot No. 8, Salt Lake Bypass, LB Block, Sector III, Salt Lake City, Kolkata, 700106, West Bengal, India.

出版信息

Sci Rep. 2023 Jan 18;13(1):965. doi: 10.1038/s41598-022-27192-w.

Abstract

The Human Activity Recognition (HAR) problem leverages pattern recognition to classify physical human activities as they are captured by several sensor modalities. Remote monitoring of an individual's activities has gained importance due to the reduction in travel and physical activities during the pandemic. Research on HAR enables one person to either remotely monitor or recognize another person's activity via the ubiquitous mobile device or by using sensor-based Internet of Things (IoT). Our proposed work focuses on the accurate classification of daily human activities from both accelerometer and gyroscope sensor data after converting into spectrogram images. The feature extraction process follows by leveraging the pre-trained weights of two popular and efficient transfer learning convolutional neural network models. Finally, a wrapper-based feature selection method has been employed for selecting the optimal feature subset that both reduces the training time and improves the final classification performance. The proposed HAR model has been tested on the three benchmark datasets namely, HARTH, KU-HAR and HuGaDB and has achieved 88.89%, 97.97% and 93.82% respectively on these datasets. It is to be noted that the proposed HAR model achieves an improvement of about 21%, 20% and 6% in the overall classification accuracies while utilizing only 52%, 45% and 60% of the original feature set for HuGaDB, KU-HAR and HARTH datasets respectively. This proves the effectiveness of our proposed wrapper-based feature selection HAR methodology.

摘要

人体活动识别 (HAR) 问题利用模式识别技术对多种传感器模式捕获的人体活动进行分类。由于大流行期间旅行和身体活动减少,对个体活动的远程监测变得越来越重要。HAR 研究使人们能够通过无处不在的移动设备或基于传感器的物联网 (IoT) 远程监测或识别另一个人的活动。我们的工作重点是将加速度计和陀螺仪传感器数据转换为声谱图图像后,对日常人体活动进行准确分类。特征提取过程是利用两个流行且高效的迁移学习卷积神经网络模型的预训练权重来完成的。最后,采用基于包装器的特征选择方法选择最佳特征子集,既减少了训练时间,又提高了最终的分类性能。所提出的 HAR 模型已在三个基准数据集 HARTH、KU-HAR 和 HuGaDB 上进行了测试,在这些数据集上的分类准确率分别达到了 88.89%、97.97%和 93.82%。值得注意的是,与原始特征集相比,所提出的 HAR 模型在利用 HuGaDB、KU-HAR 和 HARTH 数据集的 52%、45%和 60%的原始特征集时,整体分类准确率分别提高了约 21%、20%和 6%。这证明了我们提出的基于包装器的特征选择 HAR 方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f19d/9849465/80d9199a13b9/41598_2022_27192_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验