School of Nursing and Midwifery, Monash University, Clayton, Victoria, Australia; Cabrini Health, Malvern, Victoria, Australia.
Infectious Diseases, Monash Health, Clayton, Victoria, Australia; School of Clinical Sciences, Monash University, Prahran, Australia.
J Hosp Infect. 2024 Jun;148:112-118. doi: 10.1016/j.jhin.2024.04.001. Epub 2024 Apr 12.
Surveillance of healthcare-associated infections (HAIs) in Australia is disparate, resource intensive, unsustainable, and provides limited information. Traditional HAI surveillance is time intensive and agreement levels between clinicians have been shown to be variable.
To compare two methods: a semi-automated algorithm, and coding data, against traditional surgical site infection (SSI) surveillance methods.
This retrospective multi-centre cohort study included all patients undergoing a hip (HPRO) or knee (KPRO) prosthesis and coronary artery bypass graft (CABG) surgery during a two-year period at two large metropolitan hospitals. Routine SSI data were obtained via the infection prevention and control (IPC) team, a previously developed algorithm was applied to all patient records, and the ICD-10-AM data were searched for those categorized as having an SSI.
Overall, 1447, 1416, and 1026 patients who underwent HPRO, KPRO, and CABG, respectively, were included. The highest sensitivity values were generated by the algorithm: HPRO deep or organ-space (D/O) 0.87 (95% confidence interval: 0.66-0.96), CABG 0.86 (0.64-0.96), and HPRO all SSI 0.77 (0.57-89); the lowest sensitivity was Code CABG D/O 0.03 (0.00-0.21). The highest PPV values were generated by the algorithm: HPRO D/O 0.97 (0.77-0.99), CABG D/O 0.97 (0.76-0.99), and the Code HPRO D/O 0.9 (0.66-0.99). Both the algorithm and coding data resulted in a substantial reduction in the number of medical records required to review.
The application of algorithms to enhance SSI surveillance demonstrates high accuracy in identifying patient records that require review by IPC teams to determine the presence of an SSI. Coding data alone should not be used to identify SSIs.
澳大利亚的医疗保健相关性感染(HAI)监测工作存在差异,资源密集,不可持续,且提供的信息有限。传统的 HAI 监测工作耗时且临床医生之间的一致性水平存在差异。
比较两种方法:一种是半自动算法,另一种是编码数据,与传统的手术部位感染(SSI)监测方法进行比较。
这项回顾性多中心队列研究纳入了在两家大型都市医院进行髋关节(HPRO)或膝关节(KPRO)假体和冠状动脉旁路移植术(CABG)的所有患者,研究时间为两年。通过感染预防和控制(IPC)团队获取常规 SSI 数据,应用先前开发的算法对所有患者记录进行分析,并对 ICD-10-AM 数据进行搜索,以确定那些被归类为发生 SSI 的患者。
共纳入了 1447 例 HPRO、1416 例 KPRO 和 1026 例 CABG 手术患者。算法生成的最高敏感性值分别为:HPRO 深部或器官间隙(D/O)感染 0.87(95%置信区间:0.66-0.96)、CABG 0.86(0.64-0.96)和 HPRO 所有 SSI 0.77(0.57-89);最低敏感性值为 Code CABG D/O 感染 0.03(0.00-0.21)。算法生成的最高阳性预测值分别为:HPRO D/O 感染 0.97(0.77-0.99)、CABG D/O 感染 0.97(0.76-0.99)和 Code HPRO D/O 感染 0.9(0.66-0.99)。应用算法和编码数据均显著减少了需要审查的病历数量。
应用算法增强 SSI 监测可准确识别需要 IPC 团队审查以确定是否存在 SSI 的患者记录。单独使用编码数据不应用于识别 SSI。