Suppr超能文献

利用人工智能减少矫形外科手术部位感染监测工作量:在 4 家西班牙医院的算法设计、验证和实施。

Using artificial intelligence to reduce orthopedic surgical site infection surveillance workload: Algorithm design, validation, and implementation in 4 Spanish hospitals.

机构信息

Infection Control Department, Fundación Jiménez Díaz University Hospital, Madrid, Spain.

Spanish Department of Health, Madrid, Spain.

出版信息

Am J Infect Control. 2023 Nov;51(11):1225-1229. doi: 10.1016/j.ajic.2023.04.165. Epub 2023 Apr 24.

Abstract

BACKGROUND

Surgical site infection (SSI) surveillance is a labor-intensive endeavor. We present the design and validation of an algorithm for SSI detection after hip replacement surgery, and a report of its successful implementation in 4 public hospitals in Madrid, Spain.

METHODS

We designed a multivariable algorithm, AI-HPRO, using natural language processing (NLP) and extreme gradient boosting to screen for SSI in patients undergoing hip replacement surgery. The development and validation cohorts included data from 19,661 health care episodes from 4 hospitals in Madrid, Spain.

RESULTS

Positive microbiological cultures, the text variable "infection", and prescription of clindamycin were strong markers of SSI. Statistical analysis of the final model indicated high sensitivity (99.18%) and specificity (91.01%) with an F1-score of 0.32, AUC of 0.989, accuracy of 91.27%, and negative predictive value of 99.98%.

DISCUSSION

Implementation of the AI-HPRO algorithm reduced the surveillance time from 975 person/hours to 63.5 person/hours and permitted an 88.95% reduction in the total volume of clinical records to be reviewed manually. The model presents a higher negative predictive value (99.98%) than algorithms relying on NLP alone (94%) or NLP and logistic regression (97%).

CONCLUSIONS

This is the first report of an algorithm combining NLP and extreme gradient-boosting to permit accurate, real-time orthopedic SSI surveillance.

摘要

背景

手术部位感染(SSI)监测是一项劳动密集型工作。我们提出了一种用于髋关节置换术后 SSI 检测的算法的设计和验证,并报告了其在西班牙马德里的 4 家公立医院中的成功实施。

方法

我们使用自然语言处理(NLP)和极端梯度增强设计了一种多变量算法 AI-HPRO,用于筛选接受髋关节置换手术的患者的 SSI。开发和验证队列包括来自西班牙马德里 4 家医院的 19661 例医疗记录的数据。

结果

阳性微生物培养物、文本变量“感染”和克林霉素的处方是 SSI 的强标志物。对最终模型的统计分析表明,高灵敏度(99.18%)和特异性(91.01%),F1 得分为 0.32,AUC 为 0.989,准确率为 91.27%,阴性预测值为 99.98%。

讨论

AI-HPRO 算法的实施将监测时间从 975 人/小时减少到 63.5 人/小时,并允许减少 88.95%的手动审查临床记录总量。该模型的阴性预测值(99.98%)高于仅依赖 NLP(94%)或 NLP 和逻辑回归(97%)的算法。

结论

这是第一个报告结合 NLP 和极端梯度增强的算法,可实现准确、实时的骨科 SSI 监测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验