Suppr超能文献

一种具有变异新冠病毒、季节性和疫苗因素的随机移动驱动空间明确的SEIQRD新冠疫情模型

A Stochastic Mobility-Driven Spatially Explicit SEIQRD covid-19 Model with VOCs, Seasonality, and Vaccines.

作者信息

Alleman Tijs W, Rollier Michiel, Vergeynst Jenna, Baetens Jan M

机构信息

BIOSPACE, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, Ghent, 9000, Belgium.

BIOMATH, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, Ghent, 9000, Belgium.

出版信息

Appl Math Model. 2023 Jun 29. doi: 10.1016/j.apm.2023.06.027.

Abstract

In this work, we extend our previously developed compartmental SEIQRD model for sars-cov-2 in Belgium. We introduce sars-cov-2 variants of concern, vaccines, and seasonality in our model, as their addition has proven necessary for modelling sars-cov-2 transmission dynamics during the 2020-2021 covid-19 pandemic in Belgium. The model is geographically stratified into eleven spatial patches (provinces), and a telecommunication dataset provided by Belgium's biggest operator is used to incorporate interprovincial mobility. We calibrate the model using the daily number of hospitalisations in each province and serological data. We find the model adequately describes these data, but the addition of interprovincial mobility was not necessary to obtain an accurate description of the 2020-2021 sars-cov-2 pandemic in Belgium. We further demonstrate how our model can be used to help policymakers decide on the optimal timing of the release of social restrictions.We find that adding spatial heterogeneity by geographically stratifying the model results in more uncertain model projections as compared to an equivalent nation-level model, which has both communicative advantages and disadvantages. We finally discuss the impact of imposing local mobility or social contact restrictions to contain an epidemic in a given province and find that lowering social contact is a more effective strategy than lowering mobility.

摘要

在这项工作中,我们扩展了我们之前为比利时的新冠病毒开发的分区SEIQRD模型。我们在模型中引入了新冠病毒关注变体、疫苗和季节性因素,因为事实证明,加入这些因素对于模拟2020 - 2021年比利时新冠疫情期间的新冠病毒传播动态是必要的。该模型在地理上被划分为11个空间区域(省份),并使用比利时最大运营商提供的电信数据集纳入省际流动性。我们使用每个省份的每日住院人数和血清学数据对模型进行校准。我们发现该模型能够充分描述这些数据,但加入省际流动性对于准确描述2020 - 2021年比利时的新冠疫情并非必要。我们进一步展示了我们的模型如何用于帮助政策制定者决定解除社会限制的最佳时机。我们发现,与同等的国家层面模型相比,通过对模型进行地理分层来增加空间异质性会导致模型预测更具不确定性,这既有交流方面的优势,也有劣势。我们最后讨论了在特定省份实施局部流动性或社会接触限制以控制疫情的影响,发现降低社会接触是比降低流动性更有效的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff9e/10306418/a5abde17c9ad/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验