Gladstone Institutes, San Francisco, CA 94158.
Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158.
Proc Natl Acad Sci U S A. 2024 Apr 23;121(17):e2307814121. doi: 10.1073/pnas.2307814121. Epub 2024 Apr 15.
Efforts to genetically reverse C9orf72 pathology have been hampered by our incomplete understanding of the regulation of this complex locus. We generated five different genomic excisions at the locus in a patient-derived induced pluripotent stem cell (iPSC) line and a non-diseased wild-type (WT) line (11 total isogenic lines), and examined gene expression and pathological hallmarks of C9 frontotemporal dementia/amyotrophic lateral sclerosis in motor neurons differentiated from these lines. Comparing the excisions in these isogenic series removed the confounding effects of different genomic backgrounds and allowed us to probe the effects of specific genomic changes. A coding single nucleotide polymorphism in the patient cell line allowed us to distinguish transcripts from the normal vs. mutant allele. Using digital droplet PCR (ddPCR), we determined that transcription from the mutant allele is upregulated at least 10-fold, and that sense transcription is independently regulated from each allele. Surprisingly, excision of the WT allele increased pathologic dipeptide repeat poly-GP expression from the mutant allele. Importantly, a single allele was sufficient to supply a normal amount of protein, suggesting that the C9orf72 gene is haplo-sufficient in induced motor neurons. Excision of the mutant repeat expansion reverted all pathology (RNA abnormalities, dipeptide repeat production, and TDP-43 pathology) and improved electrophysiological function, whereas silencing sense expression did not eliminate all dipeptide repeat proteins, presumably because of the antisense expression. These data increase our understanding of C9orf72 gene regulation and inform gene therapy approaches, including antisense oligonucleotides (ASOs) and CRISPR gene editing.
我们对该复杂基因座调控的认识尚不完整,这阻碍了我们从遗传学角度逆转 C9orf72 病理的努力。我们在源自患者的诱导多能干细胞(iPSC)系和非患病野生型(WT)系中(共 11 条同源系)的 C9orf72 基因座生成了 5 种不同的基因组缺失,并在这些系的运动神经元中检测了基因表达和 C9 额颞叶痴呆/肌萎缩侧索硬化症的病理特征。比较这些同源系中的缺失消除了不同基因组背景的混杂效应,并使我们能够探究特定基因组变化的影响。患者细胞系中的一个编码单核苷酸多态性使我们能够区分正常和突变等位基因的转录本。使用数字液滴 PCR(ddPCR),我们确定从突变等位基因转录的转录本至少上调了 10 倍,并且从每个等位基因独立调节有义转录。令人惊讶的是,WT 等位基因的缺失增加了来自突变等位基因的病理性二肽重复聚-GP 的表达。重要的是,单等位基因足以提供正常量的蛋白,表明 C9orf72 基因在诱导的运动神经元中是单倍体充足的。突变重复扩增的缺失逆转了所有病理学(RNA 异常、二肽重复产生和 TDP-43 病理学)并改善了电生理功能,而有义表达的沉默并没有消除所有二肽重复蛋白,大概是因为反义表达的原因。这些数据增加了我们对 C9orf72 基因调控的理解,并为基因治疗方法提供了信息,包括反义寡核苷酸(ASO)和 CRISPR 基因编辑。