Suppr超能文献

用于下一代可充电锂电池的金属氯化物阴极

Metal chloride cathodes for next-generation rechargeable lithium batteries.

作者信息

Dai Yiming, Zhang Shuoqing, Wen Jiayun, Song Zhenyou, Wang Tengrui, Zhang Renyuan, Fan Xiulin, Luo Wei

机构信息

Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.

State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.

出版信息

iScience. 2024 Mar 26;27(4):109557. doi: 10.1016/j.isci.2024.109557. eCollection 2024 Apr 19.

Abstract

Rechargeable lithium-ion batteries (LIBs) have prospered a rechargeable world, predominantly relying on various metal oxide cathode materials for their abilities to reversibly de-/intercalate lithium-ion, while also serving as lithium sources for batteries. Despite the success of metal oxide, issues including low energy density have raised doubts about their suitability for next-generation lithium batteries. This has sparked interest in metal chlorides, a neglected cathode material family. Metal chlorides show promise with factors like energy density, diffusion coefficient, and compressibility. Unfortunately, challenges like high solubility hamper their utilization. In this review, we highlight the opportunities for metal chlorides in the post-lithium-ion era. Subsequently, we summarize their dissolution challenges. Furthermore, we discuss recent advancements, encompassing liquid-state electrolyte engineering, solid-state electrolytes (SSEs) cooperation, and LiCl-based cathodes. Finally, we provide an outlook on future research directions of metal chlorides, emphasizing electrode fabrication, electrolyte design, the application of SSEs, and the exploration of conversion reactions.

摘要

可充电锂离子电池(LIBs)造就了一个可充电的世界,主要依赖各种金属氧化物阴极材料可逆地脱嵌锂离子的能力,同时这些材料也作为电池的锂源。尽管金属氧化物取得了成功,但包括能量密度低在内的问题引发了人们对其是否适用于下一代锂电池的质疑。这激发了人们对金属氯化物的兴趣,金属氯化物是一个被忽视的阴极材料家族。金属氯化物在能量密度、扩散系数和可压缩性等方面展现出潜力。不幸的是,高溶解性等挑战阻碍了它们的应用。在这篇综述中,我们强调了金属氯化物在锂离子电池后时代的机遇。随后,我们总结了它们的溶解挑战。此外,我们讨论了近期的进展,包括液态电解质工程、固态电解质(SSEs)协同以及基于LiCl的阴极。最后,我们对金属氯化物未来的研究方向进行了展望,重点强调电极制造、电解质设计、SSEs的应用以及转化反应的探索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82b8/11016933/9b92eb866887/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验